Skip to main content Skip to main navigation menu Skip to site footer
Figure 4. Percentage of achievement of lecturer’s activities
Articles
Published: 2024-11-29

Efforts to overcome students’ learning difficulties in geometry: A didactic design of creative thinking skills through metacognitive approaches

Universitas Negeri Medan
Universitas Negeri Medan
Universitas Negeri Medan
Universitas Singaperbangsa Karawang
Didactic design Metacognition Prior knowledge Creative thinking skills Quadrangular

Galleys

Abstract

[English]Prior knowledge is crucial in connecting all available information so that new knowledge can be constructed through the processes of assimilation or accommodation. The objectives of this study are: (1) to identify the prior knowledge forgotten by students that causes difficulties in solving problems related to the area of Euclidean plane; (2) to describe the learning trajectory of creative thinking based on metacognition; and (3) to determine a didactic design that can reduce students’ difficulties in solving problems involving mathematical creative reasoning on the topic of Euclidean plane. This research uses a didactic design research method with two trials as a means to address the research questions and achieve the research objectives. The results show that the college students are still not creative or unable to move beyond their prior knowledge related to the patterns of the Euclidean plane. With their existing prior knowledge, the students are not able to analyze problems involving Euclidean plane into simpler parts, nor can they synthesize these parts into more complex forms (analysis and synthesis). More specifically, the students are unable to decompose Euclidean planes into smaller shapes of triangles and quadrilaterals as well as calculate their area or perimeter, nor do they understand the relationships between different shapes of Euclidean planes. To address these issues, a learning trajectory of creative mathematical thinking through metacognitive approaches has been developed, consisting of five stages: problem orientation, planning to solve the problem, realization of the plan, mastery of prior mathematical knowledge (concept of creativity), and evaluation of the solutions. Based on the trial outcomes, the developed didactic design sequence can reduce the difficulties faced by students.

[Bahasa]Pengetahuan awal merupakan hal yang paling krusial dalam menghubungkan seluruh informasi yang ada sehingga pengetahuan baru dapat dikonstruksi melalui proses asimilasi atau akomodasi. Tujuan dari penelitian ini adalah (1) untuk mengidentifikasi pengetahuan awal yang dilupakan mahasiswa sehingga mereka kesulitan dalam menyelesaikan soal luas bangun datar, (2) mendeskripsikan lintasan pembelajaran berpikir kreatif berbasis metakognisi, dan (3) untuk mengetahui desain didaktik yang dapat mengurangi kesulitan mahasiswa dalam menyelesaikan masalah penalaran kreatif matematis pada materi luas bangun datar. Metode penelitian ini merupakan metode penelitian desain didaktik dengan dua kali uji coba sebagai cara untuk menjawab rumusan masalah sehingga tujuan penelitian tercapai. Hasil penelitian menunjukkan bahwa mahasiswa masih belum kreatif atau belum bisa keluar dari pengetahuan awal terkait pola bangun datar. Berbekal pengetahuan awal yang ada, mahasiswa belum mampu menganalisis permasalahan bangun datar ke dalam bagian-bagian sederhana serta mensintesis kembali bagian-bagian tersebut ke dalam bentuk yang lebih kompleks (analisis dan sintesis). Selain itu, mahasiswa belum mampu mengurai bangun datar menjadi segitiga atau segi empat yang lebih kecil dan menghitung luas atau kelilingnya serta belum memahami hubungan antara berbagai bangun datar (relasi antara bangun datar). Untuk mengantisipasi permasalahan tersebut, lintasan pembelajaran berpikir kreatif matematis berbasis metakognisi telah dikembangkan yang terdiri atas lima tahapan yaitu orientasi pada masalah, rencana mengatasi masalah, realisasi rencana, penguasaan pengetahuan matematika awal (konsep kreativitas), dan evaluasi hasil yang diperoleh. Berdasarkan hasil ujicoba, rangkaian desain didaktik yang dikembangkan dapat mengurangi kesulitan yang dihadapi mahasiswa.

Downloads

Download data is not yet available.

References

  1. Aslanov, I., & Guerra, E. (2023). Tautological formal explanations: does prior knowledge affect their satisfiability?. Frontiers in Psychology, 14, 1258985. https://doi.org/10.3389/fpsyg.2023.1258985
  2. Banson, G. M., Bonyah, E., Boateng, F. O., & Owusu, R. (2023). Geometric perceptions of pre-service teachers and their geometric achievement. Contemporary Mathematics and Science Education, 4(2), ep23020. https://doi.org/10.30935/conmaths/13341
  3. Biber, Ç., Tuna, A., & Korkmaz, S. (2013). The mistakes and the misconceptions of the eight grade students on the subject of angles. European Journal of Science and Mathematics Education, 1(2), 50-59. https://doi.org/10.30935/scimath/9387
  4. Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48. https://doi.org/10.2307/749317
  5. Covey, S. R. (2013). The 7 habits of highly effective people. RosettaBooks LLC. https://icrrd.com/public/media/01-11-2020-212827The%207%20Habits%20of%20Highly%20Effective%20People.pdf
  6. Didik, D. (2017). Filosofi dan makna batik khas Yogyakarta. Personal Communication.
  7. Dong, A., Jong, M. S. Y., & King, R. B. (2020). How does prior knowledge influence learning engagement? The mediating roles of cognitive load and help-seeking. Frontiers in Psychology, 11, 591203. https://doi.org/10.3389/fpsyg.2020.591203
  8. Elbehary, S. G. A., Fahem, S. M., & Peni, N. R. N. (2023). Track prospective mathematics teachers' understanding of special quadrilaterals: An exploration of level 3 of geometric thinking. Futurity Education, 3(3). 20-45. https://doi.org/10.57125/FED.2023.09.25.02
  9. Ganal, N. N., & Guiab, M. R. (2014). Problems and difficulties encounterd by students towards mastering learning competencies in mathematics. Researchers World, 5, 25-37.
  10. Halat, E., Jakubowski, E., & Aydin, N. (2008). Reform-based curriculum and motivation in geometry. Eurasia Journal of Mathematics, Science and Technology Education, 4(3), 285-292. https://doi.org/10.12973/ejmste/75351
  11. Irawan, A. (2015). Desain didaktis bahan ajar problem solving pada konsep persamaan linear satu variabel. Seminar Nasional Matematika Dan Pendidikan Matematika UNY 2015, 651-658. http://seminar.uny.ac.id/semnasmatematika/sites/seminar.uny.ac.id.semnasmatematika/files/banner/PM-94.pdf
  12. Kansanen, P. (2003). Studying--the realistic bridge between instruction and learning. An attempt to a conceptual whole of the teaching-studying-learning process. Educational Studies, 29(2–3), 221–232. https://doi.org/10.1080/03055690303279
  13. Kostons, D., & van der Werf, G. (2015). The effects of activating prior topic and metacognitive knowledge on text comprehension scores. British Journal of Educational Psychology, 85(3), 264-275. https://doi.org/10.1111/bjep.12069
  14. Kusno, K., & Sutarto, S. (2022). Identifying and correcting students’ misconceptions in defining angle and triangle. European Journal of Educational Research, 11(3), 1797-1811. https://doi.org/10.12973/eu-jer.11.3.1797
  15. Kusrianto, A. (2013). Batik: Filosofi, motif, dan kegunaan. Yogyakarta: Andi.
  16. Munandar, U. (2009). Pengembangan kreativitas anak berbakat. Jakarta: Rineka Cipta.
  17. Musfiratul, M., Ikhsan, M., Anwar., A., & Arijuddin, A. (2023). Analysis of students' difficulties in understanding triangular material. International Journal of Trends in Mathematics Education Research (IJTMER), 6(2), 138-144. https://doi.org/10.33122/ijtmer.v6i2.218
  18. Prahmana, R. C. I., & D’Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11(3), 439-456. http://doi.org/10.22342/jme.11.3.12949.439-456
  19. Schoenfeld, A. H. (1992). Learning to think matematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.). Handbook for Research on Mathematics Teaching and Learning (pp.334-370). New York: MacMillan.
  20. Stanton, J. D., Sebesta, A. J., & Dunlosky, J. (2021). Fostering metacognition to support student learning and performance. CBE life sciences education, 20(2), fe3. https://doi.org/10.1187/cbe.20-12-0289
  21. Supriatna, T. (2011). Pengembangan disain didaktis bahan ajar pemecahan masalah matematis luas daerah segitiga pada sekolah menengah pertama. Master Thesis, Universitas Pendidikan Indonesia.
  22. Suryadi, D. (2010). Didactical design research (DDR) dalam pengembangan pembelajaran matematika (Dipresentasikan dalam Seminar Nasional Pembelajaran MIPA di UM Malang, 13 November 2010). Malang: MIPA UM Malang.
  23. Suryadi, D. (2013). Didactical design research (DDR) to improve the teaching of mathematics. Far East Journal of Mathematical Education, 10(1), 91–107.
  24. Suryadi, D. (2019). Penelitian desain didaktis (DDR) dan implementasinya. Gapura Press.
  25. Verner, I., Massarwe, K., & Bshouty, D. (2019). Development of competencies for teaching geometry through an ethnomathematical approach. Journal of Mathematical Behavior, 56, 100708. https://doi.org/10.1016/j.jmathb.2019.05.002
  26. Wallas, G. (2014). The art of thought. England: Solis Press.
  27. Zuya, H. E., & Kwalat, S. K. (2015). Teacher’s knowledge of students about geometry. International Journal of Learning, Teaching and Educational Research, 13(3), 100–114. https://www.ijlter.org/index.php/ijlter/article/view/438

How to Cite

Fauzi, K. M. A., Hia, Y., Darari, M. B., & Siagian, M. D. (2024). Efforts to overcome students’ learning difficulties in geometry: A didactic design of creative thinking skills through metacognitive approaches. Beta: Jurnal Tadris Matematika, 17(2), 159–182. https://doi.org/10.20414/betajtm.v17i2.648