Abstract
[English]: Computational thinking (CT) becomes an essential ability in the 21st century in which mathematics instruction integrated science, technology, engineering, art, and mathematics (STEAM) approach is expected to be an effective intervention for optimizing CT skills. Present study describes and synthesizes global trend and students’ CT achievement in mathematics instruction integrated STEAM education. A systematic review using bibliometric analysis and qualitative meta-synthesis was applied to do this study. Five hundred and nine studies indexed by Scopus and published between 2004 and 2023 were used as the data to bibliometric analysis. Particularly, 14 empirically qualitative studies were included in qualitative meta-synthesis. Results revealed that the publication development of CT studies slightly soared, whereas the citation development on CT studies relatively fluctuated in the period of 2004 - 2023. There were several emerging themes in CT studies, such as CT component, cognitive, affective, & psychomotor domain, mathematical content, CT learning environment, technological intervention in CT, research methodology, popular country involved in CT, participant, educational level, and STEAM component. Generally, students had achieved five CT components, such as pattern recognition, abstraction, decomposition, generalization, and algorithms caused by the integration of STEAM approach. The conclusion and implications of this study for mathematics education are comprehensively discussed.
[Bahasa]: Berpikir komputasi menjadi kemampuan yang esensial di abad 21 yang mana pembelajaran matematika yang terintegrasi pendekatan science, technology, engineering, art, and mathematics (STEAM) diharapkan menjadi intervensi efektif dalam mengoptimalkan kemampuan berpikir komputasi. Studi ini mendeskripsikan dan mensintesis tren global dan pencapaian berpikir komputasi siswa dalam pembelajaran matematika yang menggunakan pendekatan STEAM. Sebuah riviu sistematik yang menggunakan analisis bibliometrik dan meta-sintesis kualitatif diterapkan untuk melakukan studi ini. Lima ratus sembilan studi inklusi yang terindeks Scopus dan dipublikasikan antara 2004 dan 2023 digunakan sebagai data untuk analisis bibliometrik. Secara khusus, 14 studi empiris kualitatif diinklusikan dalam meta-sintesis kualitatif. Hasil penelitian ini mengungkapkan bahwa perkembangan publikasi dari studi-studi berpikir komputasi cukup meningkat, sedangkan perkembangan sitasi terhadap studi-studi berpikir komputasi relatif berfluktuasi pada periode 2004 – 2023. Terdapat beberapa tema yang muncul terkait studi-studi berpikir komputasi, seperti: komponen berpikir komputasi, domain kognitif, afektif, dan psikomotor, konten matematika, lingkungan belajar berpikir komputasi, intervensi teknologi dalam berpikir komputasi, metodologi penelitian, negara popular yang dilibatkan dalam berpikir komputasi, partisipan, jenjang pendidikan, dan komponen STEAM. Secara umum, siswa sudah mencapai lima komponen berpikir komputasi, seperti: pengenalan pola, abstraksi, dekomposisi, generalisasi, dan algoritma yang disebabkan oleh pengintegrasian pendekatan STEAM. Simpulan dan implikasi dari studi ini untuk pendidikan matematika didiskusikan secara komprehensif.
Downloads
References
- Abouelenein, Y. A. M., & Elmaadaway, M. A. N. (2023). Impact of teaching a neuro-computerized course through VLE to develop computational thinking among mathematics pre-service teachers. Journal of Educational Computing Research, 61(6), 1175–1206. https://doi.org/10.1177/07356331231165099
- Aguayo, C., Videla, R., López-Cortés, F., Rossel, S., & Ibacache, C. (2023). Ethical enactivism for smart and inclusive STEAM learning design. Heliyon, 9(9), 1–15. https://doi.org/10.1016/j.heliyon.2023.e19205
- Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7), 833–835. https://doi.org/10.1093/comjnl/bxs074
- Aminah, N., Sukestiyarno, Y. L., Cahyono, A. N., & Maat, S. M. (2023). Student activities in solving mathematics problems with a computational thinking using Scratch. International Journal of Evaluation and Research in Education, 12(2), 613–621. https://doi.org/10.11591/ijere.v12i2.23308
- Aminah, N., Sukestiyarno, Y. L., Wardano, W., & Cahyono, A. N. (2022). Computational thinking process of prospective mathematics teacher in solving diophantine linear equation problems. European Journal of Educational Research, 11(3), 1495–1507. https://doi.org/10.12973/eu-jer.11.3.1495
- Angeli, C. (2021). The effects of scaffolded programming scripts on pre-service teachers’ computational thinking: Developing algorithmic thinking through programming robots. International Journal of Child-Computer Interaction, 31, 1–20. https://doi.org/10.1016/j.ijcci.2021.100329
- Angraini, L. M., Yolanda, F., & Muhammad, I. (2023). Augmented reality: The improvement of computational thinking based on students’ initial mathematical ability. International Journal of Instruction, 16(3), 1033–1054. https://doi.org/10.29333/iji.2023.16355a
- Barrón-Estrada, M. L., Zatarain-Cabada, R., Romero-Polo, J. A., & Monroy, J. N. (2022). Patrony: A mobile application for pattern recognition learning. Education and Information Technologies, 27(1), 1237–1260. https://doi.org/10.1007/s10639-021-10636-7
- Bertrand, M. G., & Namukasa, I. K. (2023). A pedagogical model for STEAM education. Journal of Research in Innovative Teaching and Learning, 16(2), 169–191. https://doi.org/10.1108/JRIT-12-2021-0081
- Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. ACM International Conference Proceeding Series, November, 65–72. https://doi.org/10.1145/3137065.3137069
- Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada (Vol. 1, p. 25). https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
- Budiyanto, C. W., Fenyvesi, K., Lathifah, A., & Yuana, R. A. (2022). Computational thinking development: Benefiting from educational robotics in STEM teaching. European Journal of Educational Research, 11(4), 1997–2012. https://doi.org/10.12973/eu-jer.11.4.1997
- Camacho-Tamayo, E., & Bernal-Ballen, A. (2023). Validation of an instrument to measure natural science teachers’ self-perception about implementing STEAM approach in pedagogical practices. Education Sciences, 13(8), 1–16. https://doi.org/10.3390/educsci13080764
- Chan, S. W., Looi, C. K., Ho, W. K., Huang, W., Seow, P., Wu, L., & Kim, M. S. (2020). Computational thinking activities in number patterns: A study in a Singapore secondary school. ICCE 2020 - 28th International Conference on Computers in Education, 1(November), 171–176. https://www.researchgate.net/publication/346145101_Computational_Thinking_Activities_in_Number_Patterns_A_Study_in_a_Singapore_Secondary_School
- Chookaew, S., Howimanporn, S., & Hutamarn, S. (2020). Investigating students’ computational thinking through STEM robot-based learning activities. Advances in Science, Technology and Engineering Systems, 5(6), 1366–1371. https://doi.org/10.25046/aj0506164
- Chookaew, S., Howimanporn, S., Pratumsuwan, P., Hutamarn, S., Sootkaneung, W., & Wongwatkit, C. (2018). Enhancing high-school students’ computational thinking with educational robotics learning. Proceedings - 2018 7th International Congress on Advanced Applied Informatics, IIAI-AAI 2018, July, 204–208. https://doi.org/10.1109/IIAI-AAI.2018.00047
- Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8th ed.). Routledge Taylor & Francis Group.
- Corbin, J., & Strauss, A. (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage Publications Inc.
- Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five approaches. Sage Publications Inc. http://www.nber.org/papers/w16019
- Cui, Z., & Ng, O. L. (2021). The interplay between mathematical and computational thinking in primary school students’ mathematical problem-solving within a programming environment. Journal of Educational Computing Research, 59(5), 988–1012. https://doi.org/10.1177/0735633120979930
- del Olmo-Muñoz, J., Bueno-Baquero, A., Cózar-Gutiérrez, R., & González-Calero, J. A. (2023). Exploring gamification approaches for enhancing computational thinking in young learners. Education Sciences, 13(5), 1–16. https://doi.org/10.3390/educsci13050487
- del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers and Education, 150(January), 1–19. https://doi.org/10.1016/j.compedu.2020.103832
- Dian, M. (2020). Student’s computational thinking skill in solving a problem of convergences or divergences of series in freedom of learning program. Journal of Physics: Conference Series, 1663(1), 1–7. https://doi.org/10.1088/1742-6596/1663/1/012023
- Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(April), 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
- Ehsan, H., Dandridge, T. M., Yeter, I. H., & Cardella, M. E. (2018). K-2 students’ computational thinking engagement in formal and informal learning settings: A case study (fundamental). ASEE Annual Conference and Exposition, Conference Proceedings, June, 1–24. https://doi.org/10.18260/1-2--30743
- Ersozlu, Z., Swartz, M., & Skourdoumbis, A. (2023). Developing computational thinking through mathematics: An evaluative scientific mapping. Education Sciences, 13(4), 52–63. https://doi.org/10.3390/educsci13040422
- Fanchamps, N. L. J. A., Slangen, L., Hennissen, P., & Specht, M. (2021). The influence of SRA programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction. International Journal of Technology and Design Education, 31(2), 203–222. https://doi.org/10.1007/s10798-019-09559-9
- Finfgeld-Connett, D. (2018). A guide to qualitative meta-synthesis. Routledge.
- Fry, K., Makar, K., & Hillman, J. (2023). M in CoMputational thinking: How long does it take to read a book? Teaching Statistics, 45(1), 30–39. https://doi.org/10.1111/test.12348
- Fuad, M., Suyanto, E., Muhammad, U. A., & Suparman. (2023). Indonesian students’ reading literacy ability in the cooperative integrated reading and composition learning: A meta-analysis. International Journal of Evaluation and Research in Education, 12(4), 2121–2129. https://doi.org/10.11591/ijere.v12i4.25171
- Fuad, M., Suyanto, E., Sumarno, Muhammad, U. A., & Suparman. (2022). A bibliometric analysis of technology-based foreign language learning during the COVID-19 pandemic : Direction for Indonesia language learning. International Journal of Information and Education Technology, 12(10), 983–995. https://doi.org/10.18178/ijiet.2022.12.10.1710
- Fuadi, D. S., Suparman, S., Juandi, D., & Avip Priatna Martadiputra, B. (2021). Technology-assisted problem-based learning against common problem-based learning in cultivating mathematical critical thinking skills: A meta-analysis. ACM International Conference Proceeding Series, 162–168. https://doi.org/10.1145/3510309.3510335
- Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In Computer Science Education (pp. 19–38). https://doi.org/10.5040/9781350057142.ch-003
- Gu, X., Tong, D., Shi, P., Zou, Y., Yuan, H., Chen, C., & Zhao, G. (2023). Incorporating STEAM activities into creativity training in higher education. Thinking Skills and Creativity, 50(April), 1–13. https://doi.org/10.1016/j.tsc.2023.101395
- Guimaraes, V., Pessoa, L., Bentes, A. L., Folz, R., Melo, T., & De Freitas, R. (2020). W-STEAM card game to develop computational thinking. CEUR Workshop Proceedings, 2709, 116–127. https://ceur-ws.org/Vol-2709/paper244.pdf
- Hanid, M. F. A., Mohamad Said, M. N. H., Yahaya, N., & Abdullah, Z. (2022). The elements of computational thinking in learning geometry by using augmented reality application. International Journal of Interactive Mobile Technologies, 16(2), 28–41. https://doi.org/10.3991/ijim.v16i02.27295
- Henderson, P. B., Cortina, T. J., Wing, J. M., & Hazzan, O. (2007). Computational thinking. SIGCSE 2007: 38th SIGCSE Technical Symposium on Computer Science Education, February, 195–196. https://doi.org/10.1145/1227310.1227378
- Horvath, A. S., Löchtefeld, M., Heinrich, F., & Bemman, B. (2023). STEAM matters for sustainability: 10 years of art and technology student research on sustainability through problem-based learning. Journal of Problem Based Learning in Higher Education, 11(2), 1–33. https://doi.org/10.54337/ojs.jpblhe.v11i2.7768
- Hu, C. C., Tseng, H. T., Chen, M. H., Alexis, G. P. I., & Chen, N. S. (2020). Comparing the effects of robots and IoT objects on STEM learning outcomes and computational thinking skills between programming-experienced learners and programming-novice learners. Proceedings - IEEE 20th International Conference on Advanced Learning Technologies, ICALT 2020, 87–89. https://doi.org/10.1109/ICALT49669.2020.00033
- Jaya, A., & Suparman, S. (2021). The use of CABRI software in mathematics learning for cultivating geometrical conceptual understanding: A meta-analysis. ACM International Conference Proceeding Series, 37–44. https://doi.org/10.1145/3510309.3510316
- Cronin, C. (2011). Doing your literature review: traditional and systematic techniques. Evaluation & Research in Education, 24(3), 219–221. https://doi.org/10.1080/09500790.2011.581509
- Juandi, D., Suparman, Martadiputra, B. A. P., Tamur, M., & Hasanah, A. (2022). Does mathematics domain cause the heterogeneity of students ’ mathematical critical thinking skills through problem- based learning ? A meta-analysis Does Mathematics Domain Cause the Heterogeneity of Students ’ Mathematical Critical Thinking Skills throu. AIP Conference Proceedings, 070028(December), 1–8. https://doi.org/https://doi.org/10.1063/5.0102714
- Juandi, D., Tamur, M., Martadiputra, B. A. P., Suparman, & Kurnila, V. S. (2022). A meta-analysis of a year of virtual-based learning amidst the COVID-19 crisis: Possible solutions or problems? AIP Conference Proceedings, 2468, 1–7. https://doi.org/10.1063/5.0102715
- Juandi, D., Tamur, M., & Suparman. (2023). Formulating Best Practices for Digital Game-Based. MSCEIS 2021, 090003(May), 1–8. https://doi.org/10.1063/5.0155520
- Juškevičienė, A., Stupurienė, G., & Jevsikova, T. (2021). Computational thinking development through physical computing activities in STEAM education. Computer Applications in Engineering Education, 29(1), 175–190. https://doi.org/10.1002/cae.22365
- Kaup, C. F., Pedersen, P. L., & Tvedebrink, T. (2023). Integrating computational thinking to enhance students’ mathematical understanding. Journal of Pedagogical Research, 7(2), 127–142. https://doi.org/10.33902/JPR.202318531
- Leary, H., & Walker, A. (2018). Meta-analysis and meta-synthesis methodologies: Rigorously piecing together research. TechTrends, 62(5), 525–534. https://doi.org/10.1007/s11528-018-0312-7
- Leonard, J., Djonko-Moore, C., Francis, K. R., Carey, A. S., Mitchell, M. B., & Goffney, I. D. (2023). Promoting computational thinking, computational participation, and spatial reasoning with LEGO robotics. Canadian Journal of Science, Mathematics and Technology Education, 23(1), 120–144. https://doi.org/10.1007/s42330-023-00267-0
- Lewis Presser, A. E., Young, J. M., Rosenfeld, D., Clements, L. J., Kook, J. F., Sherwood, H., & Cerrone, M. (2023). Data collection and analysis for preschoolers: An engaging context for integrating mathematics and computational thinking with digital tools. Early Childhood Research Quarterly, 65(December), 42–56. https://doi.org/10.1016/j.ecresq.2023.05.012
- Liu, C., & Zhang, T. (2023). Constructivist learning method of ordinary differential equations in college mathematics teaching. Applied Mathematics and Nonlinear Sciences, 8(1), 585–592. https://doi.org/10.2478/amns.2022.2.0043
- Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE Bulletin Inroads, 41(1), 260–264. https://doi.org/10.1145/1539024.1508959
- Maharani, S., Kholid, M. N., Pradana, L. N., & Nusantara, T. (2019). Problem-solving in the context of computational thinking. Infinity: Journal of Mathematics Education, 8(2), 109–116. https://doi.org/10.22460/infinity.v8i2.p109-116
- Mang, H. M. A., Chu, H. E., Martin, S. N., & Kim, C. J. (2023). Developing an evaluation rubric for planning and assessing SSI-based STEAM programs in science classrooms. Research in Science Education, 53(6), 1119–1144. https://doi.org/10.1007/s11165-023-10123-8
- Masfingatin, T., & Maharani, S. (2019). Computational thinking: Students on proving geometry theorem. International Journal of Scientific and Technology Research, 8(9), 2216–2223. https://www.ijstr.org/final-print/sep2019/Computational-Thinking-Students-On-Proving-Geometry-Theorem.pdf
- McHugh, M. L. (2012). Interrater reliability : the kappa statistic. Biochemica Medica, 22(3), 276–282. https://hrcak.srce.hr/89395
- Mohammed, M. A., Moles, R. J., & Chen, T. F. (2016). Meta-synthesis of qualitative research: the challenges and opportunities. International Journal of Clinical Pharmacy, 38(3), 695–704. https://doi.org/10.1007/s11096-016-0289-2
- Molina-Ayuso, Á., Adamuz-Povedano, N., Bracho-López, R., & Torralbo-Rodríguez, M. (2022). Introduction to computational thinking with Scratch for teacher training for Spanish primary school teachers in mathematics. Education Sciences, 12(12), 1–13. https://doi.org/10.3390/educsci12120899
- Montoya, F. G., Alcayde, A., Baños, R., & Manzano-Agugliaro, F. (2018). A fast method for identifying worldwide scientific collaborations using the Scopus database. Telematics and Informatics, 35(1), 168–185. https://doi.org/10.1016/j.tele.2017.10.010
- Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of Scratch projects to assess and foster computational thinking. Revista de Educación a Distancia (RED), 46, 1–23. https://doi.org/10.6018/red/46/10
- Muhammad, I., Rusyid, H. K., Maharani, S., & Angraini, L. M. (2024). Computational thinking research in mathematics learning in the last decade: A bibliometric review. International Journal of Education in Mathematics, Science and Technology, 12(1), 178–202. https://doi.org/10.46328/ijemst.3086
- Muhammad, U. A., Fuad, M., Ariyani, F., & Suyanto, E. (2022). Bibliometric analysis of local wisdom-based learning : Direction for future history education research. International Journal of Evaluation and Research in Education, 11(4), 2209–2222. https://doi.org/10.11591/ijere.v11i4.23547
- Pei, C. (Yu), Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75–89. https://doi.org/10.1080/10986065.2018.1403543
- Putra, F. G., Lengkana, D., Sutiarso, S., Nurhanurawati, Saregar, A., Diani, R., Widyawati, S., Suparman, Imama, K., & Umam, R. (2024). Mathematical representation: a bibliometric mapping of the research literature (2013 – 2022). Infinity: Journal of Mathematics Education, 13(1), 1–26. https://doi.org/https://doi.org/10.22460/infinity.v13i1.p1-26
- Qureshi, H. A., & Ünlü, Z. (2020). Beyond the paradigm conflicts: A four-step coding instrument for grounded theory. International Journal of Qualitative Methods, 19, 1–10. https://doi.org/10.1177/1609406920928188
- Rich, K. M., Yadav, A., & Larimore, R. A. (2020). Teacher implementation profiles for integrating computational thinking into elementary mathematics and science instruction. Education and Information Technologies, 25(4), 3161–3188. https://doi.org/10.1007/s10639-020-10115-5
- Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316–327. https://doi.org/10.1080/10494820.2019.1612448
- Sáez López, J. M., Otero, R. B., & De Lara García-Cervigón, S. (2021). Introducing robotics and block programming in elementary education. RIED-Revista Iberoamericana de Educacion a Distancia, 24(1), 95–113. https://www.redalyc.org/jatsRepo/3314/331464460005/331464460005.pdf
- Shumway, J. F., Welch, L. E., Kozlowski, J. S., Clarke-Midura, J., & Lee, V. R. (2021). Kindergarten students’ mathematics knowledge at work: the mathematics for programming robot toys. Mathematical Thinking and Learning, 25(4), 380–408. https://doi.org/10.1080/10986065.2021.1982666
- Sulistiawati, Kusumah, Y. S., Dahlan, J. A., Juandi, D., Suparman, & Arifin, S. (2023). The trends of studies in technology-assisted inquiry-based learning: The pesrspective of bibliometric analysis. Journal of Engineering Science and Technology, 18(1), 69–80. https://www.researchgate.net/publication/368365958_The_Trends_of_Studies_in_Technology-assisted_Inquiry-based_Learning_The_Perspective_of_Bibliometric_Analysis
- Sung, G., Bhinder, H., Feng, T., & Schneider, B. (2023). Stressed or engaged? Addressing the mixed significance of physiological activity during constructivist learning. Computers and Education, 199(March), 1–16. https://doi.org/10.1016/j.compedu.2023.104784
- Sung, J., Lee, J. Y., & Chun, H. Y. (2023). Short-term effects of a classroom-based STEAM program using robotics kits on children in South Korea. International Journal of STEM Education, 10(1), 1–18. https://doi.org/10.1186/s40594-023-00417-8
- Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education. Technology, Knowledge and Learning, 22(3), 443–463. https://doi.org/10.1007/s10758-017-9328-x
- Suparman, & Juandi, D. (2022). Upgrading mathematical problem-solving abilities through problem-based learning : A meta-analysis study in some countries. AIP Conference Proceedings, 080017(December), 1–8. https://doi.org/10.1063/5.0107757
- Suparman, Juandi, D., Martadiputra, B. A. P., Badawi, A., Susanti, N., & Yunita. (2022). Cultivating secondary school students ’ mathematical critical thinking skills using technology-assisted problem-based learning : A meta-analysis. AIP Conference Proceedings, 070006(December), 1–7. https://doi.org/https://doi.org/10.1063/5.0102422
- Suparman, Juandi, D., & Tamur, M. (2021). Does problem-based learning enhance students’ higher order thinking skills in mathematics learning? A systematic review and meta-analysis. The 4th International Conference on Big Data and Education, 44–51. https://doi.org/https://doi.org/10.1145/3451400.3451408
- Susiyanti, Y., Juandi, D., & Suparman. (2022). Does project-based learning have a positive effect on student’ mathematical critical thinking skills? A meta-analysis. AIP Conference Proceedings, 2468, 1–7. https://doi.org/10.1063/5.0102486
- Suyanto, E., Fuad, M., Antrakusuma, B., Suparman, & Shidiq, A. S. (2023). Exploring the research trends of technological literacy studies in education : A systematic review using bibliometric analysis. International Journal of Information and Education Technology, 13(6), 914–924. https://doi.org/10.18178/ijiet.2023.13.6.1887
- Tan, L. S., Bek, A. C. A., & Kok, Y. H. (2022). Constructivist learning design for advanced-level mathematics in Singapore classrooms. Mathematics Education Research Journal, 34(4), 661–677. https://doi.org/10.1007/s13394-020-00363-6
- Tan, W. L., Samsudin, M. A., Ismail, M. E., Ahmad, N. J., & Talib, C. A. (2021). Exploring the effectiveness of STEAM integrated approach via Scratch on computational thinking. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), 1–19. https://doi.org/10.29333/ejmste/11403
- Tawaldi, S., Nurlaelah, E., Juandi, D., & Suparman. (2023). Is mathematics anxiety related to mathematics learning? A meta-analysis. MSCEIS 2021, 090044, 1–10. https://doi.org/10.1063/5.0155846
- Tonbuloğlu, B., & Tonbuloğlu, I. (2019). The effect of unplugged coding activities on computational thinking skills of middle school students. Informatics in Education, 18(2), 403–426. https://doi.org/10.15388/infedu.2019.19
- Tsai, C. A., Song, M. Y. W., Lo, Y. F., & Lo, C. C. (2023). Design thinking with constructivist learning increases the learning motivation and wicked problem-solving capability—An empirical research in Taiwan. Thinking Skills and Creativity, 50(August), 1–10. https://doi.org/10.1016/j.tsc.2023.101385
- Wing, J. M. (2006). Computational thinking. ACM SIGCSE Bulletin, 39(1), 195–196. https://doi.org/10.1145/1118178.1118215
- Ye, J., Lai, X., & Wong, G. K.-W. (2022). The transfer effects of computational thinking: A systematic review with meta-analysis and qualitative synthesis. Journal of Computer Assisted Learning, 38, 1620–1638. https://doi.org/10.1111/jcal.12723
- Yunita, Y., Juandi, D., Hasanah, A., & Suparman. (2022). Meta-analysis study: How effective is a project-based learning model on students’ mathematical problem-solving abilities? AIP Conference Proceedings, 2468, 1–7. https://doi.org/10.1063/5.0102458
- Zhu, J., & Liu, W. (2020). A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321–335. https://doi.org/10.1007/s11192-020-03387-8