Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-11-28

Computational thinking in mathematics instruction integrated STEAM education: Global trend and students’ achievement in the last two decades

Department of Mathematics Education, Universitas Pendidikan Indonesia
Department of Mathematics Education, Universitas Pendidikan Indonesia
Department of Mathematics Education, Universitas Pendidikan Indonesia
Department of Mathematics Education, Universitas Pendidikan Indonesia
Bibliometric Computational thinking Mathematics instruction Qualitative meta-synthesis STEAM

Galleys

Abstract

[English]Computational thinking (CT) becomes an essential ability in the 21st century in which mathematics instruction integrated science, technology, engineering, art, and mathematics (STEAM) approach is expected to be an effective intervention for optimizing CT skills. Present study describes and synthesizes global trend and students’ CT achievement in mathematics instruction integrated STEAM education. A systematic review using bibliometric analysis and qualitative meta-synthesis was applied to do this study. Five hundred and nine studies indexed by Scopus and published between 2004 and 2023 were used as the data to bibliometric analysis. Particularly, 14 empirically qualitative studies were included in qualitative meta-synthesis. Results revealed that the publication development of CT studies slightly soared, whereas the citation development on CT studies relatively fluctuated in the period of 2004 - 2023. There were several emerging themes in CT studies, such as CT component, cognitive, affective, & psychomotor domain, mathematical content, CT learning environment, technological intervention in CT, research methodology, popular country involved in CT, participant, educational level, and STEAM component. Generally, students had achieved five CT components, such as pattern recognition, abstraction, decomposition, generalization, and algorithms caused by the integration of STEAM approach. The conclusion and implications of this study for mathematics education are comprehensively discussed.  

[Bahasa]Berpikir komputasi menjadi kemampuan yang esensial di abad 21 yang mana pembelajaran matematika yang terintegrasi pendekatan science, technology, engineering, art, and mathematics (STEAM) diharapkan menjadi intervensi efektif dalam mengoptimalkan kemampuan berpikir komputasi. Studi ini mendeskripsikan dan mensintesis tren global dan pencapaian berpikir komputasi siswa dalam pembelajaran matematika yang menggunakan pendekatan STEAM. Sebuah riviu sistematik yang menggunakan analisis bibliometrik dan meta-sintesis kualitatif diterapkan untuk melakukan studi ini. Lima ratus sembilan studi inklusi yang terindeks Scopus dan dipublikasikan antara 2004 dan 2023 digunakan sebagai data untuk analisis bibliometrik. Secara khusus, 14 studi empiris kualitatif diinklusikan dalam meta-sintesis kualitatif. Hasil penelitian ini mengungkapkan bahwa perkembangan publikasi dari studi-studi berpikir komputasi cukup meningkat, sedangkan perkembangan sitasi terhadap studi-studi berpikir komputasi relatif berfluktuasi pada periode 2004 – 2023. Terdapat beberapa tema yang muncul terkait studi-studi berpikir komputasi, seperti: komponen berpikir komputasi, domain kognitif, afektif, dan psikomotor, konten matematika, lingkungan belajar berpikir komputasi, intervensi teknologi dalam berpikir komputasi, metodologi penelitian, negara popular yang dilibatkan dalam berpikir komputasi, partisipan, jenjang pendidikan, dan komponen STEAM. Secara umum, siswa sudah mencapai lima komponen berpikir komputasi, seperti: pengenalan pola, abstraksi, dekomposisi, generalisasi, dan algoritma yang disebabkan oleh pengintegrasian pendekatan STEAM. Simpulan dan implikasi dari studi ini untuk pendidikan matematika didiskusikan secara komprehensif.

Downloads

Download data is not yet available.

References

  1. Abouelenein, Y. A. M., & Elmaadaway, M. A. N. (2023). Impact of teaching a neuro-computerized course through VLE to develop computational thinking among mathematics pre-service teachers. Journal of Educational Computing Research, 61(6), 1175–1206. https://doi.org/10.1177/07356331231165099
  2. Aguayo, C., Videla, R., López-Cortés, F., Rossel, S., & Ibacache, C. (2023). Ethical enactivism for smart and inclusive STEAM learning design. Heliyon, 9(9), 1–15. https://doi.org/10.1016/j.heliyon.2023.e19205
  3. Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7), 833–835. https://doi.org/10.1093/comjnl/bxs074
  4. Aminah, N., Sukestiyarno, Y. L., Cahyono, A. N., & Maat, S. M. (2023). Student activities in solving mathematics problems with a computational thinking using Scratch. International Journal of Evaluation and Research in Education, 12(2), 613–621. https://doi.org/10.11591/ijere.v12i2.23308
  5. Aminah, N., Sukestiyarno, Y. L., Wardano, W., & Cahyono, A. N. (2022). Computational thinking process of prospective mathematics teacher in solving diophantine linear equation problems. European Journal of Educational Research, 11(3), 1495–1507. https://doi.org/10.12973/eu-jer.11.3.1495
  6. Angeli, C. (2021). The effects of scaffolded programming scripts on pre-service teachers’ computational thinking: Developing algorithmic thinking through programming robots. International Journal of Child-Computer Interaction, 31, 1–20. https://doi.org/10.1016/j.ijcci.2021.100329
  7. Angraini, L. M., Yolanda, F., & Muhammad, I. (2023). Augmented reality: The improvement of computational thinking based on students’ initial mathematical ability. International Journal of Instruction, 16(3), 1033–1054. https://doi.org/10.29333/iji.2023.16355a
  8. Barrón-Estrada, M. L., Zatarain-Cabada, R., Romero-Polo, J. A., & Monroy, J. N. (2022). Patrony: A mobile application for pattern recognition learning. Education and Information Technologies, 27(1), 1237–1260. https://doi.org/10.1007/s10639-021-10636-7
  9. Bertrand, M. G., & Namukasa, I. K. (2023). A pedagogical model for STEAM education. Journal of Research in Innovative Teaching and Learning, 16(2), 169–191. https://doi.org/10.1108/JRIT-12-2021-0081
  10. Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. ACM International Conference Proceeding Series, November, 65–72. https://doi.org/10.1145/3137065.3137069
  11. Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada (Vol. 1, p. 25). https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
  12. Budiyanto, C. W., Fenyvesi, K., Lathifah, A., & Yuana, R. A. (2022). Computational thinking development: Benefiting from educational robotics in STEM teaching. European Journal of Educational Research, 11(4), 1997–2012. https://doi.org/10.12973/eu-jer.11.4.1997
  13. Camacho-Tamayo, E., & Bernal-Ballen, A. (2023). Validation of an instrument to measure natural science teachers’ self-perception about implementing STEAM approach in pedagogical practices. Education Sciences, 13(8), 1–16. https://doi.org/10.3390/educsci13080764
  14. Chan, S. W., Looi, C. K., Ho, W. K., Huang, W., Seow, P., Wu, L., & Kim, M. S. (2020). Computational thinking activities in number patterns: A study in a Singapore secondary school. ICCE 2020 - 28th International Conference on Computers in Education, 1(November), 171–176. https://www.researchgate.net/publication/346145101_Computational_Thinking_Activities_in_Number_Patterns_A_Study_in_a_Singapore_Secondary_School
  15. Chookaew, S., Howimanporn, S., & Hutamarn, S. (2020). Investigating students’ computational thinking through STEM robot-based learning activities. Advances in Science, Technology and Engineering Systems, 5(6), 1366–1371. https://doi.org/10.25046/aj0506164
  16. Chookaew, S., Howimanporn, S., Pratumsuwan, P., Hutamarn, S., Sootkaneung, W., & Wongwatkit, C. (2018). Enhancing high-school students’ computational thinking with educational robotics learning. Proceedings - 2018 7th International Congress on Advanced Applied Informatics, IIAI-AAI 2018, July, 204–208. https://doi.org/10.1109/IIAI-AAI.2018.00047
  17. Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8th ed.). Routledge Taylor & Francis Group.
  18. Corbin, J., & Strauss, A. (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage Publications Inc.
  19. Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five approaches. Sage Publications Inc. http://www.nber.org/papers/w16019
  20. Cui, Z., & Ng, O. L. (2021). The interplay between mathematical and computational thinking in primary school students’ mathematical problem-solving within a programming environment. Journal of Educational Computing Research, 59(5), 988–1012. https://doi.org/10.1177/0735633120979930
  21. del Olmo-Muñoz, J., Bueno-Baquero, A., Cózar-Gutiérrez, R., & González-Calero, J. A. (2023). Exploring gamification approaches for enhancing computational thinking in young learners. Education Sciences, 13(5), 1–16. https://doi.org/10.3390/educsci13050487
  22. del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers and Education, 150(January), 1–19. https://doi.org/10.1016/j.compedu.2020.103832
  23. Dian, M. (2020). Student’s computational thinking skill in solving a problem of convergences or divergences of series in freedom of learning program. Journal of Physics: Conference Series, 1663(1), 1–7. https://doi.org/10.1088/1742-6596/1663/1/012023
  24. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(April), 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  25. Ehsan, H., Dandridge, T. M., Yeter, I. H., & Cardella, M. E. (2018). K-2 students’ computational thinking engagement in formal and informal learning settings: A case study (fundamental). ASEE Annual Conference and Exposition, Conference Proceedings, June, 1–24. https://doi.org/10.18260/1-2--30743
  26. Ersozlu, Z., Swartz, M., & Skourdoumbis, A. (2023). Developing computational thinking through mathematics: An evaluative scientific mapping. Education Sciences, 13(4), 52–63. https://doi.org/10.3390/educsci13040422
  27. Fanchamps, N. L. J. A., Slangen, L., Hennissen, P., & Specht, M. (2021). The influence of SRA programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction. International Journal of Technology and Design Education, 31(2), 203–222. https://doi.org/10.1007/s10798-019-09559-9
  28. Finfgeld-Connett, D. (2018). A guide to qualitative meta-synthesis. Routledge.
  29. Fry, K., Makar, K., & Hillman, J. (2023). M in CoMputational thinking: How long does it take to read a book? Teaching Statistics, 45(1), 30–39. https://doi.org/10.1111/test.12348
  30. Fuad, M., Suyanto, E., Muhammad, U. A., & Suparman. (2023). Indonesian students’ reading literacy ability in the cooperative integrated reading and composition learning: A meta-analysis. International Journal of Evaluation and Research in Education, 12(4), 2121–2129. https://doi.org/10.11591/ijere.v12i4.25171
  31. Fuad, M., Suyanto, E., Sumarno, Muhammad, U. A., & Suparman. (2022). A bibliometric analysis of technology-based foreign language learning during the COVID-19 pandemic : Direction for Indonesia language learning. International Journal of Information and Education Technology, 12(10), 983–995. https://doi.org/10.18178/ijiet.2022.12.10.1710
  32. Fuadi, D. S., Suparman, S., Juandi, D., & Avip Priatna Martadiputra, B. (2021). Technology-assisted problem-based learning against common problem-based learning in cultivating mathematical critical thinking skills: A meta-analysis. ACM International Conference Proceeding Series, 162–168. https://doi.org/10.1145/3510309.3510335
  33. Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In Computer Science Education (pp. 19–38). https://doi.org/10.5040/9781350057142.ch-003
  34. Gu, X., Tong, D., Shi, P., Zou, Y., Yuan, H., Chen, C., & Zhao, G. (2023). Incorporating STEAM activities into creativity training in higher education. Thinking Skills and Creativity, 50(April), 1–13. https://doi.org/10.1016/j.tsc.2023.101395
  35. Guimaraes, V., Pessoa, L., Bentes, A. L., Folz, R., Melo, T., & De Freitas, R. (2020). W-STEAM card game to develop computational thinking. CEUR Workshop Proceedings, 2709, 116–127. https://ceur-ws.org/Vol-2709/paper244.pdf
  36. Hanid, M. F. A., Mohamad Said, M. N. H., Yahaya, N., & Abdullah, Z. (2022). The elements of computational thinking in learning geometry by using augmented reality application. International Journal of Interactive Mobile Technologies, 16(2), 28–41. https://doi.org/10.3991/ijim.v16i02.27295
  37. Henderson, P. B., Cortina, T. J., Wing, J. M., & Hazzan, O. (2007). Computational thinking. SIGCSE 2007: 38th SIGCSE Technical Symposium on Computer Science Education, February, 195–196. https://doi.org/10.1145/1227310.1227378
  38. Horvath, A. S., Löchtefeld, M., Heinrich, F., & Bemman, B. (2023). STEAM matters for sustainability: 10 years of art and technology student research on sustainability through problem-based learning. Journal of Problem Based Learning in Higher Education, 11(2), 1–33. https://doi.org/10.54337/ojs.jpblhe.v11i2.7768
  39. Hu, C. C., Tseng, H. T., Chen, M. H., Alexis, G. P. I., & Chen, N. S. (2020). Comparing the effects of robots and IoT objects on STEM learning outcomes and computational thinking skills between programming-experienced learners and programming-novice learners. Proceedings - IEEE 20th International Conference on Advanced Learning Technologies, ICALT 2020, 87–89. https://doi.org/10.1109/ICALT49669.2020.00033
  40. Jaya, A., & Suparman, S. (2021). The use of CABRI software in mathematics learning for cultivating geometrical conceptual understanding: A meta-analysis. ACM International Conference Proceeding Series, 37–44. https://doi.org/10.1145/3510309.3510316
  41. Cronin, C. (2011). Doing your literature review: traditional and systematic techniques. Evaluation & Research in Education, 24(3), 219–221. https://doi.org/10.1080/09500790.2011.581509
  42. Juandi, D., Suparman, Martadiputra, B. A. P., Tamur, M., & Hasanah, A. (2022). Does mathematics domain cause the heterogeneity of students ’ mathematical critical thinking skills through problem- based learning ? A meta-analysis Does Mathematics Domain Cause the Heterogeneity of Students ’ Mathematical Critical Thinking Skills throu. AIP Conference Proceedings, 070028(December), 1–8. https://doi.org/https://doi.org/10.1063/5.0102714
  43. Juandi, D., Tamur, M., Martadiputra, B. A. P., Suparman, & Kurnila, V. S. (2022). A meta-analysis of a year of virtual-based learning amidst the COVID-19 crisis: Possible solutions or problems? AIP Conference Proceedings, 2468, 1–7. https://doi.org/10.1063/5.0102715
  44. Juandi, D., Tamur, M., & Suparman. (2023). Formulating Best Practices for Digital Game-Based. MSCEIS 2021, 090003(May), 1–8. https://doi.org/10.1063/5.0155520
  45. Juškevičienė, A., Stupurienė, G., & Jevsikova, T. (2021). Computational thinking development through physical computing activities in STEAM education. Computer Applications in Engineering Education, 29(1), 175–190. https://doi.org/10.1002/cae.22365
  46. Kaup, C. F., Pedersen, P. L., & Tvedebrink, T. (2023). Integrating computational thinking to enhance students’ mathematical understanding. Journal of Pedagogical Research, 7(2), 127–142. https://doi.org/10.33902/JPR.202318531
  47. Leary, H., & Walker, A. (2018). Meta-analysis and meta-synthesis methodologies: Rigorously piecing together research. TechTrends, 62(5), 525–534. https://doi.org/10.1007/s11528-018-0312-7
  48. Leonard, J., Djonko-Moore, C., Francis, K. R., Carey, A. S., Mitchell, M. B., & Goffney, I. D. (2023). Promoting computational thinking, computational participation, and spatial reasoning with LEGO robotics. Canadian Journal of Science, Mathematics and Technology Education, 23(1), 120–144. https://doi.org/10.1007/s42330-023-00267-0
  49. Lewis Presser, A. E., Young, J. M., Rosenfeld, D., Clements, L. J., Kook, J. F., Sherwood, H., & Cerrone, M. (2023). Data collection and analysis for preschoolers: An engaging context for integrating mathematics and computational thinking with digital tools. Early Childhood Research Quarterly, 65(December), 42–56. https://doi.org/10.1016/j.ecresq.2023.05.012
  50. Liu, C., & Zhang, T. (2023). Constructivist learning method of ordinary differential equations in college mathematics teaching. Applied Mathematics and Nonlinear Sciences, 8(1), 585–592. https://doi.org/10.2478/amns.2022.2.0043
  51. Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE Bulletin Inroads, 41(1), 260–264. https://doi.org/10.1145/1539024.1508959
  52. Maharani, S., Kholid, M. N., Pradana, L. N., & Nusantara, T. (2019). Problem-solving in the context of computational thinking. Infinity: Journal of Mathematics Education, 8(2), 109–116. https://doi.org/10.22460/infinity.v8i2.p109-116
  53. Mang, H. M. A., Chu, H. E., Martin, S. N., & Kim, C. J. (2023). Developing an evaluation rubric for planning and assessing SSI-based STEAM programs in science classrooms. Research in Science Education, 53(6), 1119–1144. https://doi.org/10.1007/s11165-023-10123-8
  54. Masfingatin, T., & Maharani, S. (2019). Computational thinking: Students on proving geometry theorem. International Journal of Scientific and Technology Research, 8(9), 2216–2223. https://www.ijstr.org/final-print/sep2019/Computational-Thinking-Students-On-Proving-Geometry-Theorem.pdf
  55. McHugh, M. L. (2012). Interrater reliability : the kappa statistic. Biochemica Medica, 22(3), 276–282. https://hrcak.srce.hr/89395
  56. Mohammed, M. A., Moles, R. J., & Chen, T. F. (2016). Meta-synthesis of qualitative research: the challenges and opportunities. International Journal of Clinical Pharmacy, 38(3), 695–704. https://doi.org/10.1007/s11096-016-0289-2
  57. Molina-Ayuso, Á., Adamuz-Povedano, N., Bracho-López, R., & Torralbo-Rodríguez, M. (2022). Introduction to computational thinking with Scratch for teacher training for Spanish primary school teachers in mathematics. Education Sciences, 12(12), 1–13. https://doi.org/10.3390/educsci12120899
  58. Montoya, F. G., Alcayde, A., Baños, R., & Manzano-Agugliaro, F. (2018). A fast method for identifying worldwide scientific collaborations using the Scopus database. Telematics and Informatics, 35(1), 168–185. https://doi.org/10.1016/j.tele.2017.10.010
  59. Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of Scratch projects to assess and foster computational thinking. Revista de Educación a Distancia (RED), 46, 1–23. https://doi.org/10.6018/red/46/10
  60. Muhammad, I., Rusyid, H. K., Maharani, S., & Angraini, L. M. (2024). Computational thinking research in mathematics learning in the last decade: A bibliometric review. International Journal of Education in Mathematics, Science and Technology, 12(1), 178–202. https://doi.org/10.46328/ijemst.3086
  61. Muhammad, U. A., Fuad, M., Ariyani, F., & Suyanto, E. (2022). Bibliometric analysis of local wisdom-based learning : Direction for future history education research. International Journal of Evaluation and Research in Education, 11(4), 2209–2222. https://doi.org/10.11591/ijere.v11i4.23547
  62. Pei, C. (Yu), Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75–89. https://doi.org/10.1080/10986065.2018.1403543
  63. Putra, F. G., Lengkana, D., Sutiarso, S., Nurhanurawati, Saregar, A., Diani, R., Widyawati, S., Suparman, Imama, K., & Umam, R. (2024). Mathematical representation: a bibliometric mapping of the research literature (2013 – 2022). Infinity: Journal of Mathematics Education, 13(1), 1–26. https://doi.org/https://doi.org/10.22460/infinity.v13i1.p1-26
  64. Qureshi, H. A., & Ünlü, Z. (2020). Beyond the paradigm conflicts: A four-step coding instrument for grounded theory. International Journal of Qualitative Methods, 19, 1–10. https://doi.org/10.1177/1609406920928188
  65. Rich, K. M., Yadav, A., & Larimore, R. A. (2020). Teacher implementation profiles for integrating computational thinking into elementary mathematics and science instruction. Education and Information Technologies, 25(4), 3161–3188. https://doi.org/10.1007/s10639-020-10115-5
  66. Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316–327. https://doi.org/10.1080/10494820.2019.1612448
  67. Sáez López, J. M., Otero, R. B., & De Lara García-Cervigón, S. (2021). Introducing robotics and block programming in elementary education. RIED-Revista Iberoamericana de Educacion a Distancia, 24(1), 95–113. https://www.redalyc.org/jatsRepo/3314/331464460005/331464460005.pdf
  68. Shumway, J. F., Welch, L. E., Kozlowski, J. S., Clarke-Midura, J., & Lee, V. R. (2021). Kindergarten students’ mathematics knowledge at work: the mathematics for programming robot toys. Mathematical Thinking and Learning, 25(4), 380–408. https://doi.org/10.1080/10986065.2021.1982666
  69. Sulistiawati, Kusumah, Y. S., Dahlan, J. A., Juandi, D., Suparman, & Arifin, S. (2023). The trends of studies in technology-assisted inquiry-based learning: The pesrspective of bibliometric analysis. Journal of Engineering Science and Technology, 18(1), 69–80. https://www.researchgate.net/publication/368365958_The_Trends_of_Studies_in_Technology-assisted_Inquiry-based_Learning_The_Perspective_of_Bibliometric_Analysis
  70. Sung, G., Bhinder, H., Feng, T., & Schneider, B. (2023). Stressed or engaged? Addressing the mixed significance of physiological activity during constructivist learning. Computers and Education, 199(March), 1–16. https://doi.org/10.1016/j.compedu.2023.104784
  71. Sung, J., Lee, J. Y., & Chun, H. Y. (2023). Short-term effects of a classroom-based STEAM program using robotics kits on children in South Korea. International Journal of STEM Education, 10(1), 1–18. https://doi.org/10.1186/s40594-023-00417-8
  72. Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education. Technology, Knowledge and Learning, 22(3), 443–463. https://doi.org/10.1007/s10758-017-9328-x
  73. Suparman, & Juandi, D. (2022). Upgrading mathematical problem-solving abilities through problem-based learning : A meta-analysis study in some countries. AIP Conference Proceedings, 080017(December), 1–8. https://doi.org/10.1063/5.0107757
  74. Suparman, Juandi, D., Martadiputra, B. A. P., Badawi, A., Susanti, N., & Yunita. (2022). Cultivating secondary school students ’ mathematical critical thinking skills using technology-assisted problem-based learning : A meta-analysis. AIP Conference Proceedings, 070006(December), 1–7. https://doi.org/https://doi.org/10.1063/5.0102422
  75. Suparman, Juandi, D., & Tamur, M. (2021). Does problem-based learning enhance students’ higher order thinking skills in mathematics learning? A systematic review and meta-analysis. The 4th International Conference on Big Data and Education, 44–51. https://doi.org/https://doi.org/10.1145/3451400.3451408
  76. Susiyanti, Y., Juandi, D., & Suparman. (2022). Does project-based learning have a positive effect on student’ mathematical critical thinking skills? A meta-analysis. AIP Conference Proceedings, 2468, 1–7. https://doi.org/10.1063/5.0102486
  77. Suyanto, E., Fuad, M., Antrakusuma, B., Suparman, & Shidiq, A. S. (2023). Exploring the research trends of technological literacy studies in education : A systematic review using bibliometric analysis. International Journal of Information and Education Technology, 13(6), 914–924. https://doi.org/10.18178/ijiet.2023.13.6.1887
  78. Tan, L. S., Bek, A. C. A., & Kok, Y. H. (2022). Constructivist learning design for advanced-level mathematics in Singapore classrooms. Mathematics Education Research Journal, 34(4), 661–677. https://doi.org/10.1007/s13394-020-00363-6
  79. Tan, W. L., Samsudin, M. A., Ismail, M. E., Ahmad, N. J., & Talib, C. A. (2021). Exploring the effectiveness of STEAM integrated approach via Scratch on computational thinking. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), 1–19. https://doi.org/10.29333/ejmste/11403
  80. Tawaldi, S., Nurlaelah, E., Juandi, D., & Suparman. (2023). Is mathematics anxiety related to mathematics learning? A meta-analysis. MSCEIS 2021, 090044, 1–10. https://doi.org/10.1063/5.0155846
  81. Tonbuloğlu, B., & Tonbuloğlu, I. (2019). The effect of unplugged coding activities on computational thinking skills of middle school students. Informatics in Education, 18(2), 403–426. https://doi.org/10.15388/infedu.2019.19
  82. Tsai, C. A., Song, M. Y. W., Lo, Y. F., & Lo, C. C. (2023). Design thinking with constructivist learning increases the learning motivation and wicked problem-solving capability—An empirical research in Taiwan. Thinking Skills and Creativity, 50(August), 1–10. https://doi.org/10.1016/j.tsc.2023.101385
  83. Wing, J. M. (2006). Computational thinking. ACM SIGCSE Bulletin, 39(1), 195–196. https://doi.org/10.1145/1118178.1118215
  84. Ye, J., Lai, X., & Wong, G. K.-W. (2022). The transfer effects of computational thinking: A systematic review with meta-analysis and qualitative synthesis. Journal of Computer Assisted Learning, 38, 1620–1638. https://doi.org/10.1111/jcal.12723
  85. Yunita, Y., Juandi, D., Hasanah, A., & Suparman. (2022). Meta-analysis study: How effective is a project-based learning model on students’ mathematical problem-solving abilities? AIP Conference Proceedings, 2468, 1–7. https://doi.org/10.1063/5.0102458
  86. Zhu, J., & Liu, W. (2020). A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321–335. https://doi.org/10.1007/s11192-020-03387-8

How to Cite

Suparman, Juandi, D., Turmudi, & Wahyudin. (2024). Computational thinking in mathematics instruction integrated STEAM education: Global trend and students’ achievement in the last two decades. Beta: Jurnal Tadris Matematika, 17(2), 101–134. https://doi.org/10.20414/betajtm.v17i2.643