Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2023-05-31

Exploring students’ imaginative process: Analysis, evaluation, and creation in mathematical problem-solving

STKIP Andi Matappa
STKIP YPUP Makassar
Universitas Muhammadiyah Makassar
Problem-solving Imagination Analysis Evaluation Creation

Galleys

Abstract

[English]: The role of imagination as a means of learning mathematics, unlike in other fields such as art and literature, is not well defined. The present study aims to examine the process of students’ imagination in solving mathematics problems. It involved three grade 8 students which were purposively selected based on their scores in a given test. Students’ answers to the test and the results of interviews were examined qualitatively referring to the three stages of creative problem-solving that involve imagination: analysis, evaluation and creation. The results show that, in the analysis phase, imagination was found in the students’ ability to define problems in general (common visual). As the first step in solving a problem, they analysed mathematical knowledge needed to solve the problem. In the evaluation phase, imagination was formed as students completed the final answer by creating visual representations from previous experiences as artifacts taken together and gathering necessary knowledge. In the last phase, creation, imagination was identified when students engaged in a cyclical thought process to find new ideas in solving the problem. This process repeated until the students found no other ideas or ways to solve the problem.

[Bahasa]: Peran imajinasi sebagai sarana belajar matematika belum didefinisikan dengan baik, tidak seperti pada bidang lain seperti seni dan sastra. Penelitian ini bertujuan menelusuri proses imajinasi siswa selama melakukan pemecahan masalah matematika. Penelitian ini melibatkan tiga siswa kelas 8 yang dipilih melalui purposive sampling, berdasarkan nilai tertinggi hasil tes pemecahan masalah matematika. Jawaban siswa dan hasil wawancara dianalisis secara kualitatif dengan merujuk pada tiga tahapan proses kreatif yang melibatkan imajinasi: analisis, evaluasi dan kreasi. Hasil penelitian menunjukkan, pada tahap analisis, imajinasi yang terbentuk ditandai dengan kemampuan siswa menetapkan masalah secara umum (common visual). Sebagai langkah awal untuk menyelesaikan masalah, siswa melakukan koreksi dengan cara memikirkan kembali pengetahuan matematika yang dibutuhkan. Proses imajinasi pada tahap evaluasi ditunjukkan oleh kemampuan siswa dalam menyimpulkan jawaban akhir dengan cara membangun visual dari pengalaman sebelumnya sebagai artefak yang diambil bersama serta mengumpulkan pengetahuan yang diperlukan. Pada tahap kreasi, kemampuan siswa melakukan proses berpikir secara siklis dalam memikirkan ide baru untuk menyelesaikan masalah yang dihadapi menunjukkan proses imajinasi pada tahap ini. Proses ini berlangsung secara berulang, sampai siswa tidak memiliki ide lagi untuk menyelesaikan masalah.

Downloads

Download data is not yet available.

References

  1. Arana, A. (2016). Imagination in mathematics. In A. Kind (Ed.), The Routledge handbook of philosophy of imagination (pp. 483–497). Routledge.
  2. Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214(2), 143–156.
  3. Baars, B. J. (1997). In the theater of consciousness: The workspace of the mind. Oxford University Press.
  4. Bértolo, H. (2005). Visual imagery without visual perception? Psicológica, 26(1), 173–188.
  5. Campbell, K. J., Collis, K. F., & Watson, J. M. (1995). Visual processing during mathematical problem solving. Educational Studies in Mathematics, 28(2), 177–194.
  6. Carrasco, M., & Ridout, J. B. (1993). Olfactory perception and olfactory imagery: A multidimensional analysis. Journal of Experimental Psychology: Human Perception and Performance, 19(2), 287.
  7. Caselli, R. J. (2009). Creativity: An organizational schema. Cognitive and Behavioral Neurology, 22(3), 143–154.
  8. Creswell, J. W. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage.
  9. Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, 61(3), 293–319. https://doi.org/10.1007/s10649-006-2372-4
  10. Egan, K. (2005). An imaginative approach to teaching. Jossey-Bass Inc.
  11. Egan, K. (2013). Imagination in teaching and learning: Ages 8 to 15. Routledge.
  12. Gadanidis, G. (2006). Imagination and digital mathematical performance. In P. Liljedahl (Ed.), Proceedigs of Canadian Mathematics Education Study Group (pp. 79-86). University of Calgary. https://files.eric.ed.gov/fulltext/ED529562.pdf
  13. Ginsburg, H. P., Lin, C.-L., Ness, D., & Seo, K.-H. (2009). Mathematical thinking and learning young American and Chinese children’s everyday mathematical activity. Mathematical Thinking and Learning, 5(4), 235–258. https://doi.org/10.1207/S15327833MTL0504
  14. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684.
  15. Hilbert, D., & Cohn-Vossen, S. (2021). Geometry and the imagination (Vol. 87). American Mathematical Society.
  16. Jitendra, A. K., Griffin, C. C., Haria, P., Leh, J., Adams, A., & Kaduvettoor, A. (2007). A comparison of single and multiple strategy instruction on third-grade students’ mathematical problem solving. Journal of Educational Psychology, 99(1), 115.
  17. Kasner, E., & Newman, J. R. (2001). Mathematics and the imagination. Courier Corporation.
  18. Kwon, H., Capraro, R. M., & Capraro, M. M. (2021). When I believe, I can: Success STEMs from my perceptions. Canadian Journal of Science, Mathematics and Technology Education, 21(1), 67–85. https://doi.org/10.1007/s42330-020-00132-4
  19. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from (Vol. 6). Basic Books.
  20. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University press.
  21. Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Y. Li, E. Silver, & S. Li. (Eds.), Transforming mathematics instruction. Advances in mathematics education (pp.59–80). Springer. https://doi.org/10.1007/978-3-319-04993-9_5
  22. Mazur, B. (2004). Imagining numbers: (Particularly the square root of minus fifteen). Macmillan.
  23. Mellet, E., Kosslyn, S., Mazoyer, N., Bricogne, S., Perchey, G., Beaudoin, V., Thirel, O., Denis, M., & Maroyer, B. (1999). Functional anatomy of high resolution visual mental imagery. Neuroimage, 9, S373–S373.
  24. McFarland, C. P., Primosch, M., Maxson, C. M., & Stewart, B. T. (2017). Enhancing memory and imagination improves problem solving among individuals with depression. Memory & Cognition, 45(6), 932–939. https://doi.org/10.3758/s13421-017-0706-3
  25. NCTM. (2000). Priciples and standards for school mathematics. NCTM.
  26. Northoff, G., Heinzel, A., De Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain-A meta-analysis of imaging studies on the self. Neuroimage, 31(1), 440–457.
  27. Plsek, P. E. (1996). Working paper: Models for the creative process. DirectdCreativity. http://www.directedcreativity.com/pages/WPModels.html
  28. Polya, G. (2004). How to solve it: A new aspect of mathematical method (Vol. 85). Princeton university press.
  29. Radovanovic, S., Korotkov, A., Ljubisavljevic, M., Lyskov, E., Thunberg, J., Kataeva, G., Danko, S., Roudas, M., Pakhomov, S., & Medvedev, S. (2002). Comparison of brain activity during different types of proprioceptive inputs: A positron emission tomography study. Experimental Brain Research, 143(3), 276–285.
  30. Rahayuningsih, S., Sirajuddin, S., & Ikram, M. (2021). Using open-ended problem-solving tests to identify students’ mathematical creative thinking ability. Participatory Educational Research, 8(3), 285–299. https://doi.org/10.17275/per.21.66.8.3
  31. Rahayuningsih, S., Sirajuddin, S., & Nasrun, N. (2020). Cognitive flexibility: Exploring students’ problem-solving in elementary school mathematics learning. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 6(1), 59–70. https://doi.org/10.23917/jramathedu.v6i1.11630
  32. Rahayuningsih, S., Kartinah, & Nurhusain, M. (2023). Students’ creative thinking stages in inquiry-based learning: A mixed-methods study of elementary school students in Indonesia. Acta Scientiae, 25(5), 238–272. https://doi.org/10.17648/acta.scientiae.7612
  33. Rodionov, A. R. (2013). Brain mechanisms of imagination in solving creative verbal tasks. Human Physiology, 39(3), 256–264. https://doi.org/10.1134/S0362119713030158
  34. Sarwanto, Fajari, L., & Chumdari. (2020). Open-ended questions to assess critical-thinking skills in Indonesian elementary school. International Journal of Instruction, 14(1), 615–630. https://doi.org/10.29333/IJI.2021.14137A
  35. Wellner, G. (2022). Digital imagination: Ihde’s and Stiegler’s concepts of Imagination. Foundations of Science, 27(1), 189–204. https://doi.org/10.1007/s10699-020-09737-2
  36. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

How to Cite

Rahayuningsih, S., Nurhusain, M., & Sirajuddin, S. (2023). Exploring students’ imaginative process: Analysis, evaluation, and creation in mathematical problem-solving . Beta: Jurnal Tadris Matematika, 16(1), 24–37. https://doi.org/10.20414/betajtm.v16i1.537