Skip to main content Skip to main navigation menu Skip to site footer
Published: 2021-12-17

An ethnomethodological analysis of students’ understanding of the concept of trigonometry in a high-stakes examination in South Africa

University of the Western Cape
Universitas Mahasaraswati Denpasar
High-stakes examination Trigonometry Ethnomethodological approach Resistance Accommodation



[English]: In South Africa, National Senior Certificate (NSC) mathematics examination is a capping external examination taken at the culmination of twelve years of schooling. The purpose of this study was to investigate and analyze the responses of examinees in the examinations in the concept of trigonometry. While the study mainly used an ethnomethodological approach, a documentary analytical approach was also adopted. Documentary analysis was necessitated by the private nature of the NSC examination, as we only had access to the written work of the examinees. The major findings were: (1) that the strategies and tactics used by examinees are highly driven by the context of the high-stakes examination; (2) that examinees’ ways of working exhibit the general structure of the practice that is commonly found in mathematical discourse practices. Further studies are required to deepen the understanding of the thinking processes of examinees by conducting focus group interviews, where the examinees are afforded opportunities to explain their workings in school-based assessments.

[Bahasa]: Di Afrika Selatan, ujian matematika National Senior Certificate (NSC) adalah ujian tambahan yang diambil pada akhir dari dua belas tahun sekolah. Penelitian ini bertujuan untuk melakukan investigasi dan analisis tanggapan siswa peserta ujian matematika NSC terkait konsep trigonometri. Selain pendekatan etnometodologi yang secara umum dipakai dalam penelitian ini, pendekatan analitis dokumenter yang juga diadopsi terkait karakteristik ujian NSC, dalam hal inipeneliti hanya memiliki akses pada jawaban tertulis peserta ujian. Temuan utama penelitian adalah: (1) bahwa strategi dan taktik yang digunakan oleh peserta ujian sangat didorong oleh konteks ujian berisiko tinggi; (2) bahwa cara kerja peserta ujian menunjukkan struktur umum praktik yang biasa ditemukan dalam praktis diskursus matematika. Penelitian lebih lanjut diperlukan untuk memperdalam pemahaman tentang proses berpikir peserta ujian dengan melakukan wawancara kelompok terfokus, dimana peserta ujian diberikan kesempatan untuk menjelaskan cara kerja mereka dalam penilaian berbasis sekolah.


Download data is not yet available.


  1. Barksdale-Ladd, M. A., & Thomas, K. F. (2000). What’s at stake in high-stakes testing? Teachers and parents speak out. Journal of Teacher Education, 51(5), 384–397.
  2. Brown, P., Lauder, H., & Ashton, D. (2008). Education, globalisation and the future of the knowledge economy. European Educational Research Journal, 7(2), 131–156. Doi: 10.2304/eerj.2008.7.2.131
  3. Chinnappan, M., Nason, R., & Lawson, M. (1996). Pre-service teachers’ pedagogical and content knowledge about trigonometry and geometry: An initial investigation. In P. C. Clarkson (Ed), Proceedings of the 19th Annual Conference of the Mathematics Education Research Group of Australasia. Melbourne: MERGA.
  4. Coulon, A. (1995). Ethnomethodology. Thousand Oaks, California: Sage Publications.
  5. Delice, A., & Roper, T. (2006). Implications of a comparative study for mathematics education in the English education system. Teaching Mathematics and its Applications: An International Journal of the IMA, 25(2), 64–72. Doi: 10.1093/teamat/hri007
  6. Denzin, N. K., & Lincoln, Y. S. (2011). The SAGE handbook of qualitative research. Sage.
  7. Department of Basic Education (DBE). (2011). Curriculum and assessment policy statement: Grades 10–12. Pretoria: Mathematics.
  8. Dourish, P., & Button, G. (1998). On “technomethodology”: Foundational relationships between ethnomethodology and system design. Human-computer Interaction, 13(4), 395–432. Doi: 10.1207/s15327051hci1304_2
  9. Durkheim, E. (1950). The rules of sociological method. (8th ed. / translated by Sarah A. Solovay and John H. Mueller, and edit ed by George E.G. Catlin). Glencoe, Illinois: Free Press.
  10. Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, N.J: Prentice-Hall.
  11. Garfinkel, H. (1991). Respecification: Evidence for locally produced, naturally accountable phenomena of order, logic, meaning, method, etc. in and as of the essential haecceity of immortal ordinary society I–an announcement of studies. In G. Button. (Ed.), Ethnomethodology and the human sciences (pp. 10–19). New York, NY: Cambridge University Press.
  12. Griffin, B. W., & Heidorn, M. H. (1996). An examination of the relationship between minimum competency test performance and dropping out of high school. Educational Evaluation and Policy Analysis, 18(3), 243–252.
  13. Gür, H. (2009). Trigonometry learning. New Horizons in Education, 57(1), 67–80.
  14. Harlen, W. & Deakin, C. R. (2002) A systematic review of the impact of summative assessment and tests on students’ motivation for learning (EPPI-Centre Review, version 1.1). In Research Evidence in Education Library. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London. Retrieved from
  15. Jacob, E. (1987). Qualitative research traditions: A review. Review of Educational Research, 57(1), 1–50. Doi: 10.3102/00346543057001001
  16. Jacobs, M., Mhakure D., Fray, R.L., Holtman, L., & Julie, C. (2014). Item difficulty analysis of a high-stakes mathematics examination using Rasch analysis. Pythagoras, 35(1), 1-7. Doi: 10.4102/pythagoras.v35i1.220
  17. Julie, C. (1992). Doing Mathematics – What does it mean? Unpublished keynote address presented at The Second Annual Convention of the Mathematics Association of Transkei. Transkei Inservice College: Mthatha.
  18. Julie, C. (2003). Work moments in mathematical modelling by practising mathematics teachers with no prior experience of mathematical modelling and applications. New Zealand Journal of Mathematics, 32 (Supplementary Issue), 117–124.
  19. Julie, C. (2011). LEDIMTALI brochure. Bellville: University of the Western Cape.
  20. Julie, C., Smith, C. R. & Holtman, L. (Eds.) (2019). Caught in the Act – Reflections on continuing professional development of mathematics teachers in a collaborative partnership. Stellenbosch: African Sun Media.
  21. Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254-284. Doi: 10.1037/0033-2909.119.2.254
  22. Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27(1), 29 – 63. Doi: 10.3102/00028312027001029
  23. Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge University Press. Doi: 10.1017/CBO9780511609268
  24. Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.), Multiple Perspectives on Mathematics Teaching and Learning (pp. 19–44). Westport, CT: Ablex.
  25. Liberman, K. (2012). Semantic drift in conversations. Human Studies, 35(2), 263–277. Doi: 10.1007/s10746-012-9225-1
  26. Madaus, G. F. (1991). The effects of important tests on students: Implications for a national examination system. The Phi Delta Kappan, 73(3), 226–231.
  27. Orhun, N. (2004). Students’ mistakes and misconceptions on teaching of trigonometry. Journal of Curriculum Studies, 32(6), 797–820.
  28. Pickering, A. (1995). The mangle of practice: Time, agency and science. Chicago: University of Chicago.
  29. Raj, M., & Nega, M. (2011). History of trigonometry with a Classroom Application. Presented at AMATYC 37, Austin, Texas on 11 November 2011. Georgia Perimeter College.
  30. Schmidt, N. B., Lerew, D. R., & Jackson, R. J. (1999). Prospective evaluation of anxiety sensitivity in the pathogenesis of panic: Replication and extension. Journal of Abnormal Psychology, 108(3), 532-537. Doi: 10.1037/0021-843X.108.3.532
  31. Schoenfeld, A. H. (1987). Cognitive science and mathematics education. New York: Routledge. Doi: 10.4324/9780203062685
  32. Simons, M. D. (2016). An ethnomethodological analysis of learners’ ways of working in a high-stakes Grade 12 Mathematics National Senior Certificate (NSC) Examination: The case of Trigonometry. Unpublished PhD dissertation. University of the Western Cape.
  33. Sofiyah, S. (2018). Analysis of students’ error in proving trigonometric identities. International Journal of Management and Applied Science, 4(5), 83–86.
  34. Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundations of mathematics education. In Proceedings of the annual meeting of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 45–64). Mexico: PME Morelia.
  35. Walsh, R., Fitzmaurice, O., & O’Donoghue, J. (2017). What Subject Matter Knowledge do second-level teachers need to know to teach trigonometry? An exploration and case study. Irish Educational Studies, 36(3), 273–306. Doi: 10.1080/03323315.2017.1327361
  36. Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to structure sense-making. Mathematical Thinking and Learning, 8(2), 91–111. Doi: 10.1207/s15327833mtl0802_1
  37. Weber, K. (2005). Students’ understanding of trigonometric functions. Mathematics Education Research Journal, 17(3), 91–112. Doi: 10.1007/BF03217423
  38. Wenger, E. (1998). Communities of practice: Learning as a social system. Systems Thinker, 9(5), 2–3.
  39. Wheelock, A., Bebell, D. J., & Haney, W. (2000). What can student drawings tell us about high-stakes testing in Massachusetts? Teachers College Record, 2. Retrieved from

How to Cite

Simons, M. D., & Wibawa, K. A. (2021). An ethnomethodological analysis of students’ understanding of the concept of trigonometry in a high-stakes examination in South Africa. Beta: Jurnal Tadris Matematika, 14(2), 93–106.