Skip to main content Skip to main navigation menu Skip to site footer
Published: 2021-12-18

Higher-order thinking skills among male and female students: An experimental study of the problem-based calculus learning model in secondary schools

Universitas Sembilanbelas November Kolaka
Universitas Negeri Yogyakarta
Universitas Negeri Yogyakarta
problem based calculus learning model higher order thinking skills HOTS



[English]: This study aims to examine the effectiveness of the problem-based calculus learning model (PB-CLM) towards students’ higher-order thinking skills (HOTS). PB-CLM is a modification of problem-based learning’s (PBL) syntax. It was a quasi-experimental with a group pretest-posttest design involving 351 11th-grade students as the population. Seventy-one students of two classes were randomly selected as a sample. Data was collected through pretest and posttest developed from three aspects of HOTS; analysis, evaluation, and synthesis. To determine the effectiveness of PB-CLM, paired sample t-test and independent sample t-test with a significance level of 5% (α = 0.05) were used. The results show that students’ activities during the learning process in PB-CLM has a positive effect on increasing their HOTS (mean difference = 30.141; sig one-tailed = 0.000). Furthermore, there was no significant difference in HOTS among male and female students, both at the pretest and posttest (mean difference = 0.81731; sig.= 0.295). Likewise, the increase in HOTS scores (posttest-pretest) did not differ significantly between gender (mean difference = 0.88141; sig. one-tailed = 0.740).

[Bahasa]: Penelitian ini bertujuan untuk menguji keefektifan problem-based calculus learning model (PB-CLM) terhadap higher-order thinking skills (HOTS) siswa. PB-CLM merupakan modifikasi dari sintaks model problem-based learning (PBL). Penelitian ini menggunakan rancangan quasi eksperimen dengan desain one group pretest-posttest yang melibatkan 351 siswa kelas XI sebagai populasi penelitian. Tujuah puluh satu siswa dari 2 kelas dipilih secara acak sebagai sampel. Data penelitian dikumpulkan dengan menggunakan pretest dan posttest yang dikembangkan dari 3 aspek HOTS; analisis, evaluasi, dan sintesis. Untuk mengetahui keefektifan PB-CLM digunakan paired sample t-test dan independent sample t-test dengan taraf signifikansi 5% (α = 0,05). Hasil analisis menunjukkan aktivitas siswa selama pembelajaran dengan PB-CLM efektif dalam meningkatkan HOTS (mean difference = 30,141; = 0,000). Lebih lanjut, tidak ditemukan perbedaan yang signifikan antara HOTS siswa laki-laki dan perempuan, baik pada pretest maupun posttest (mean difference = 0,81731; sig.= 0,295). Begitu pula peningkatan skor HOTS (posttest-pretest) juga tidak berbeda signifikan antara siswa laki-laki dan perempuan (mean difference = 0,88141; sig. one-tailed = 0,740).


Download data is not yet available.


  1. Ajai, J. T., & Imoko, B. I. (2014). Gender differences in mathematics achievement and retention scores: A case of problem-based learning method. International Journal of Research in Education and Science, 1(1), 45-50.
  2. Akyol, Z., & Garrison, D. R. (2011). Understanding cognitive presence in an online and blended community of inquiry: Assessing outcomes and processes for deep approaches to learning. British Journal of Educational Technology, 42(2), 233–250. Doi: 10.1111/j.1467-8535.2009.01029.x
  3. Alghadari, F., Herman, T., & Prabawanto, S. (2020). Factors affecting senior high school students to solve three-dimensional geometry problems. International Electronic Journal of Mathematics Education, 15(3), 1-11. Doi: 10.29333/iejme/8234
  4. Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Monterey, CA: Wadstworth.
  5. Alonso, F., López, G., Manrique, D., & Viñes, J. M. (2005). An instructional model for web-based e-learning education with a blended learning process approach. British Journal of Educational Technology, 36(2), 217–235. Doi: 10.1111/j.1467-8535.2005.00454.x
  6. Anderson, O. W., & Krathwohl, D. R. (2015). Kerangka landasan untuk pembelajaran, pengajaran, dan asessmen: Revisi taksonomi pendidikan Bloom (Trans. A. Prihantoro). New York, NY: Longman.
  7. Apino, E., & Retnawati, H. (2017). Model Creative problem solving berorientasi higher order thinking skills (HOTS). Yogyakarta: Parama Publishing.
  8. Arends, R. I. (2012). Learning to teach (9th ed.). New York, NY: McGraw-Hill.
  9. Arends, R. I., & Kilcher, A. (2010). Teaching for student learning: Becoming an accomplished teacher. New York: Routledge. Doi: 10.4324/9780203866771
  10. Arslan, S. (2012). The influence of environment education on critical thinking and environmental attitude. Procedia - Social and Behavioral Sciences, 55, 902–909. Doi: 10.1016/j.sbspro.2012.09.579
  11. Ary, D., Jacobs, L. C., Sorensen, C., & Razavieh, A. (2010). Introduction to research in education (8th ed.). Belmont, CA: Wadsworth.
  12. Awofala, A. O. A. (2017). Assessing senior secondary school students’ mathematical proficiency as related to gender and performance in mathematics in Nigeria. International Journal of Research in Education and Science, 3(2), 488–502. Doi: 10.21890/ijres.327908
  13. Barak, M., & Yuan, S. (2021). A cultural perspective to project-based learning and the cultivation of innovative thinking. Thinking Skills and Creativity, 39, 100766. Doi: 10.1016/j.tsc.2020.100766
  14. Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. Alexandria, VA: ASCD.
  15. Chen, C. H., & Yang, Y. C. (2019). Revisiting the effects of project-based learning on students’ academic achievement: A meta-analysis investigating moderators. Educational Research Review, 26, 71–81. Doi: 10.1016/j.edurev.2018.11.001
  16. Chinedu, C. C., Olabiyi, O. S., & Kamin, Y. B. (2015). Strategies for improving higher order thinking skills in teaching and learning of design and technology education. Journal of Technical Education and Training, 7(2), 35–43. Retrieved from
  17. Chongo, S., Osman, K., & Nayan, N. A. (2020). Level of computational thinking skills among secondary science student: Variation across gender and mathematics achievement skills among secondary science student. Science Education International, 31(2), 159–163. Doi: 10.33828/sei.v31.i2.4
  18. Clements, D. H., & Joswick, C. (2018). Broadening the horizons of research on discovery-based learning. Instructional Science, 46(1), 155–167. Doi: 10.1007/s11251-018-9449-1
  19. Collins, R. (2014). Skills for the 21st Century: Teaching higher-order thinking. Curriculum & Leadership Journal, 12(14). Retrieved from,37431.html?issueID=12910
  20. Creswell, J. W. (2012). Educational research: planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Boston, MA: Pearson Education Inc.
  21. Deep, S., Ahmed, A., Suleman, N., Abbas, M. Z., Nazar, U., & Razzaq, H. S. A. (2020). The problem-based learning approach towards developing soft skills: A systematic review. Qualitative Report, 25(11), 4029–4054. Doi: 10.46743/2160-3715/2020.4114
  22. Djidu, H., & Jailani, J. (2017a). Aktivitas pembelajaran matematika yang dapat melatih kemampuan berpikir tingkat tinggi siswa. In A. W. Kurniasih, B. E. Susilo, & M. Kharis (Eds.), PRISMA, Prosiding Seminar Nasional Matematika X 2016 (Vol. 1, Issue 1, pp. 312–321). Fakultas Matematika dan Ilmu Pengetahuan Alam, UNNES. Retrived from
  23. Djidu, H., & Jailani, J. (2017b). Model pembelajaran kalkulus SMA berbasis masalah untuk meningkatkan kemampuan berpikir tingkat tinggi siswa. Yogyakarta: Parama Publishing.
  24. Djidu, H., & Jailani, J. (2018). Developing problem based calculus learning model. Jurnal Kependidikan: Penelitian Inovasi Pembelajaran, 2(1), 68–84. Doi: 10.21831/jk.v2i1.12689
  25. Djidu, H., & Retnawati, H. (2018). Cultural values-integrated mathematical learning model to develop HOTS and character values. In E. Retnowati, A. Ghufron, Marzuki, Kasiyan, A. C. Pierawan, & Ashadi (Eds.), Character Education for 21st Century Global Citizens (pp. 363–370). Yogyakarta: Routledge. Doi: 10.1201/9781315104188-46
  26. Ebel, R. L., & Frisbie, D. A. (1991). Essentials of educational measurement. Englewood Cliffs, N.J: Prentice-Hall International, Inc.
  27. Eggen, P., & Kauchak, D. (2012). Strategies and model for teachers: Teaching content and thinking skills. Boston, MA: Pearson Education Inc.
  28. Ertmer, P. A., & Simons, K. D. (2006). Jumping the PBL implementation hurdle: supporting the efforts of K–12 teachers. Interdisciplinary Journal of Problem-Based Learning, 1(1), 40–54. Doi: 10.7771/1541-5015.1005
  29. Fuad, N. M., Zubaidah, S., Mahanal, S., & Suarsini, E. (2017). Improving junior high schools’ critical thinking skills based on test three different models of learning. International Journal of Instruction, 10(1), 101–116. Doi: 10.12973/iji.2017.1017a
  30. Goethals, P. L. (2013). The pursuit of higher-order thinking in the mathematics classroom. Center for Faculty Excellence, United States Military Academy, West Point, NY.
  31. Gunter, M. A., Estes, T. H., & Schwab, J. (1990). Instruction: A model approach. Boston, MA: Allyn and Bacon.
  32. He, W. J, & Wong, W. C. (2011). Gender differences in creative thinking revisited: Findings from analysis of variability. Personality and Individual Differences, 51(7), 807–811. Doi: 10.1016/j.paid.2011.06.027
  33. Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W., & Kaufman, J. C. (2013). Increasing students’ scientific creativity: The ‘Learn to Think’ intervention program. Journal of Creative Behavior, 47(1), 3–21. Doi: 10.1002/jocb.20
  34. Ichsan, I. Z., Sigit, D. V., Miarsyah, M., Ali, A., Arif, W. P., & Prayitno, T. A. (2019). HOTS-AEP: Higher order thinking skills from elementary to master students in environmental learning. European Journal of Educational Research, 8(4), 935–942. Doi: 10.12973/eu-jer.8.4.935
  35. Istiyono, E., Widihastuti, W., Supahar, S., & Hamdi, S. (2020). Measuring creative thinking skills of senior high school male and female students in physics (CTSP) using the IRT-based PhysTCreTS. Journal of Turkish Science Education, 17(4), 578–590. Doi: 10.36681/tused.2020.46
  36. Joyce, B., Weil, M., & Calhoun, E. (2009). Models of teaching. Upper Saddle River, NJ: Pearson Education. Inc.
  37. Kirk, R. E. (1995). Experiment design: Procedures for the behavioral sciences. Pasific Grove, CA: International Thomson Publishing.
  38. Lee, J., & Jang, S. (2014). A methodological framework for instructional design model development: Critical dimensions and synthesized procedures. Educational Technology Research and Development, 62(6), 743–765.Doi: 10.1007/s11423-014-9352-7
  39. Liceaga, A. M., Ballard, T. S., & Skura, B. J. (2011). Incorporating a modified problem-based learning exercise in a traditional lecture and lab-based dairy products course. Journal of Food Science Education, 10(2), 19–22. Doi: 10.1111/j.1541-4329.2011.00117.x
  40. Limbach, B., & Waugh, W. (2010). Developing higher level thinking. Journal of Instructional Pedagogies, 3, 1-9. Retrieved from
  41. Lin, T. J., & Tsai, C. C. (2018). Differentiating the sources of Taiwanese high school students’ multidimensional science learning self-efficacy: An examination of gender differences. Research in Science Education, 48(3), 575–596. Doi: 10.1007/s11165-016-9579-x
  42. Lo, C. K., & Hew, K. F. (2017). Using “first principles of instruction” to design secondary school mathematics flipped classroom: The findings of two exploratory studies. Journal of Educational Technology & Society, 20(1), 222–236. Retrieved from
  43. Luks, C. P. (2013). Comparing a modified problem-based learning approach to a traditional approach to teaching heat transfer comparing a modified problem-based learning approach to a traditional approach to teaching heat transfer. The proceedings of ASEE Annual Conference & Exposition (pp. 23.309.1-23.309.10). Doi: 10.18260/1-2--19323
  44. Maharaj, A., & Wagh, V. (2016). Formulating tasks to develop HOTS for first-year calculus based on Brookhart abilities. South African Journal of Science, 112(11/12), 1–6. Doi: 10.17159/sajs.2016/20160139
  45. Mainali, B. P. (2012). Higher order thinking in education. Academic Voices: A Multidisciplinary Journal, 2(1), 5–10. Doi: 10.3126/av.v2i1.8277
  46. Makarova, E., Aeschlimann, B., & Herzog, W. (2019). The gender gap in STEM fields: The impact of the gender stereotype of math and science on secondary students’ career aspirations. Frontiers in Education, 4. Doi: 10.3389/feduc.2019.00060
  47. Mashuri, S., Djidu, H., & Ningrum, R. K. (2019). Problem-based learning dalam pembelajaran matematika: Upaya guru untuk meningkatkan minat dan prestasi belajar siswa. Pythagoras: Jurnal Pendidikan Matematika, 14(2), 112–125. Doi: 10.21831/pg.v14i2.25034
  48. Miri, B., David, B. C., & Uri, Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353–369. Doi: 10.1007/s11165-006-9029-2
  49. Mitani, H. (2021). Test score gaps in higher order thinking skills: Exploring instructional practices to improve the skills and narrow the gaps. AERA Open, 7(1), 1-23. Doi: 10.1177/23328584211016470
  50. Mokhtar, M. Z., Tarmizi, M. A. A., Tarmizi, R. A., & Ayub, A. F. M. (2010). Problem-based learning in calculus course: Perception, engagement and performance. Proceedings of the 7th WSEAS international conference on Engineering education (pp. 21-25). Retrieved from
  51. Moseley, D., Baumfield, V., Elliott, J., Gregson, M., Higgins, S., Miller, J., & Newton, D. (2005). Frameworks for thinking - A handbook for teaching and learning. New York, NY: Cambridge University Press.
  52. Moust, J., Bouhuijs, P., & Schmidt, H. (2021). Introduction to problem-based learning. London: Routledge. Doi: 10.4324/9781003194187
  53. Nitko, A. J., & Brookhart, S. M. (2011). Educational assessment of student. Boston, MA: Pearson Education, Inc.
  54. Nolan, S. A., & Heinzen, T. E. (2012). Statistics for the behavioral sciences. New York, NY: Worth Publisher.
  55. Nurtanto, M., Fawaid, M., & Sofyan, H. (2020). Problem based learning (PBL) in Industry 4.0: Improving learning quality through character-based literacy learning and life career skill (LL-LCS). Journal of Physics: Conference Series, 1573(1), 1–10. Doi: 10.1088/1742-6596/1573/1/012006
  56. Orlich, D., Harder, R., Callahan, R., Trevisan, M., & Brown, A. (2010). Teaching strategies: A guide to effective instruction. Boston, MA: Wadstworth.
  57. Plomp, T. (2013). Educational design research: An introduction. In T. Plomp & N. Nieveen (Eds.), Educational design research (pp. 10–51). Netherlands Institute for Curriculum Development (SLO).
  58. Purwanto, A., Ichsan, I. Z., Nurfadhilah, N., Kurniawan, E., Ali, A., & Singh, C. K. S. (2020). ESBOR: Analysis students HOTS for develop digital technology in environmental learning. International Journal of Advanced Science and Technology, 29(4), 3896–3904. Retrieved from
  59. Rajagukguk, W., & Simanjuntak, E. (2015). Problem-based mathematics teaching kits integrated with ICT to improve students’ critical thinking ability in junior high schools in Medan. Jurnal Cakrawala Pendidikan, 3(3), 347-356. Doi: 10.21831/cp.v3i3.7342
  60. Ramirez, R. P. B., & Ganaden, M. S. (2008). Creative activities and students’ higher order thinking skills. Education Quarterly, 66(1), 22–33.
  61. Redhana, I. W. (2012). Model pembelajaran berbasis masalah dan pertanyaan socratik untuk meningkatkan keterampilan berpikir kritis siswa. Jurnal Cakrawala Pendidikan, 0(3), 351-365. Doi: 10.21831/CP.V0I3.1136
  62. Retnawati, H., & Wulandari, N. F. (2019). The development of students’ mathematical literacy proficiency. Problems of Education in the 21st Century, 77(4), 502–514. Doi: 10.33225/pec/19.77.502
  63. Roets, L., & Maritz, J. (2017). Facilitating the development of higher-order thinking skills (HOTS) of novice nursing postgraduates in Africa. Nurse Education Today, 49, 51–56. Doi: 10.1016/j.nedt.2016.11.005
  64. Rubin, J., & Rajakaruna, M. (2015). Teaching and assessing higher order thinking in the mathematics classroom with clickers. International Electronic Journal of Mathematics Education, 10(1), 37–51. Doi: 10.29333/iejme/290
  65. Saido, G. M., Siraj, S., Nordin, A. B., & Al-Amedy, O. S. (2015). Higher order thinking skills among secondary school students in science learning. The Malaysian Online Journal of Educational Science, 3(3), 13–20.
  66. Salin, A. S. A. P. (2011). Outcome-based learning and modified problem-based learning for accounting education. The proceedings of International Conference on Economics, Business and Management (Vol. 2, pp. 120–124). Retrieved from
  67. Sastrawati, E., Rusdi, M., & Syamsurizal. (2011). Problem-based learning, strategi metakognisi dan keterampilan berpikir tingkat tinggi siswa. Tekno-Pedagogi, 1(2), 1–14.
  68. Snyder, L. G., & Snyder, M. J. (2008). Teaching critical thinking and problem solving skills. The Delta Pi Epsilon Journal, 50(2), 90–99.
  69. Sumarmo, U., & Nishitani, I. (2010). High level mathematical thinking: Experiments with high school and under graduate students using various approaches and strategies. Bulletin of the Faculty of Education, Gunma University, 58(9), 9–22. Retrieved from
  70. Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 1–10. Doi: 10.1016/j.tsc.2020.100682
  71. Tan, O.-S. (2003). Problem-based learning innovation: Using problem to power learning in 21st century. Singapore: Cengange Learning.
  72. Thomas, A., & Thorne, G. (2009). How to increase higher order thinking. Metarie, LA: Center for Development and Learning. Retrieved from
  73. Thompson, T. (2008). Mathematics teachers’ interpretation of higher-order thinking in Bloom’s taxonomy. International Electronic Journal of Mathematics Education, 3(2), 96–109. Doi: 10.29333/iejme/221
  74. Wynn, C. T., Mosholder, R. S., & Larsen, C. A. (2014). Measuring the effects of problem-based learning on the development of postformal thinking skills and engagement of first-year learning community students. Learning Communities Research and Practice, 2(2), 1–31.
  75. Yen, T. S., & Halili, S. H. (2015). Effective teaching of higher-order thinking (HOT) in education. The Online Journal of Distance Education and E-Learning, 3(2), 41–47.
  76. Yunita, Y., Juandi, D., Tamur, M., Adem, A. M. G., & Pereira, J. (2020). A meta-analysis of the effects of problem-based learning on students’ creative thinking in mathematics. Beta: Jurnal Tadris Matematika, 13(2), 104–116. Doi: 10.20414/betajtm.v13i2.380
  77. Zhou, L., Li, F., Wu, S., & Zhou, M. (2020). “School’s out, but class’s on”, the largest online education in the world today: Taking China’s practical exploration during the COVID-19 epidemic prevention and control as an example. Best Evidence of Chinese Education, 4(2), 501–519. Doi: 10.15354/bece.20.ar023

How to Cite

Djidu, H., Jailani, J., & Retnawati, H. (2021). Higher-order thinking skills among male and female students: An experimental study of the problem-based calculus learning model in secondary schools. Beta: Jurnal Tadris Matematika, 14(2), 107–125.