Abstract
Matematika adalah sebuah bahasa dan aljabar merupakan bahasa tersebut. Aljabar mengantarkan kita untuk memahami masalah yang lebih kompleks. Namun, faktanya banyak peserta didik yang mengalami kesulitan dalam mempelajari aljabar yang membutuhkan kemampuan memahami simbol-simbol, operasi dan aturan-aturannya. Kemampuan tersebut tereksplorasi dalam penalaran aljabar yang didalamnya memuat keterampilan memahami pola-pola dan membuat generalisasi.Tulisan ini bertujuan untuk mendeskripsikan penalaran aljabar sebagai kunci sukses memahami konsep aljabar.
Downloads
Download data is not yet available.
References
Blanton, M.L., Kaput, J.J. (2005). Functional Thinking as a Route Into Algebra in the Elementary Grades. International Reviews on Mathematical Education, 37(1), 34–42.
Breiteig, T., & Grevholm, B. (2006). The Transition from Arithmetic to Algebra: To Reason, Explain, Argue, Generalize and Justify. Paper presented at the Proceedings of the 30th Conference of The International Group for the Psychology of Mathematics Education.
Driscoll, et.al. (2003). The Fostering Algebraic Thinking Toolkit: A Guide for Staff Development. National Science Foundation, Arlington, VA.
Kieran, C. (2004). Algebraic Thinking in the Early Grades: What Is It? The Mathematics Educator , Vol.8, No.1, 139 – 151.
Morehouse, K. E. (2007). Building Conceptual Understanding and Algebraic Reasoning in Algebra.Education and Human Development Master's Theses.
Ontario Ministry of Education. Paying Attention to Algebraic Reasoning. Diakses di http://www.edu.gov.on.ca/eng/literacynumeracy/Paying AttentiontoAlgebra.pdf
Ross, K. M. (2011). Fifth Graders' Representations And Reasoning On Constant Growth Function Problems: Connections Between Problem Representations, Student Work And Ability To Generalize. Disertasi. Department Of Teaching, Learning, And Sociocultural Studies. The University Of Arizona.
Shadiq, F. (2004). Pemecahan Masalah, Penalaran dan Komunikasi Matematika. Yogyakarta, P4TK Matematika.
Soedjadi. (2000). Kiat Pendidikan Matematika di Indonesia. Jakarta, Dirjen DIKTI Departemen Pendidikan Nasional.
Twohill , A. (2013). Algebraic reasoning in primary school: Developing a framework of growth points. Smith, C. (Ed.) Proceedings of the British Society for Research into Learning Mathematics 33(2)
Van Ameron, B. A. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics, 54, 63-75.
Watson, A. (2007). Key Understanding of Mathematics Learning. Paper 6: Algebraic Reasoning. Nuffield Foundation. University of Oxford.
Windsor, W. (2009). Algebraic Thinking- More to Do with Why, Than X and Y. Proceedings of the 10th International Conference “Models in Developing Mathematics Education”. The Mathematics Education into the 21st Century Project.
Yachel, E. (1997). A Foundation of Algebraic Reasoning in The Early Grades. Teaching Children Mathematics 3. 276-800.
Breiteig, T., & Grevholm, B. (2006). The Transition from Arithmetic to Algebra: To Reason, Explain, Argue, Generalize and Justify. Paper presented at the Proceedings of the 30th Conference of The International Group for the Psychology of Mathematics Education.
Driscoll, et.al. (2003). The Fostering Algebraic Thinking Toolkit: A Guide for Staff Development. National Science Foundation, Arlington, VA.
Kieran, C. (2004). Algebraic Thinking in the Early Grades: What Is It? The Mathematics Educator , Vol.8, No.1, 139 – 151.
Morehouse, K. E. (2007). Building Conceptual Understanding and Algebraic Reasoning in Algebra.Education and Human Development Master's Theses.
Ontario Ministry of Education. Paying Attention to Algebraic Reasoning. Diakses di http://www.edu.gov.on.ca/eng/literacynumeracy/Paying AttentiontoAlgebra.pdf
Ross, K. M. (2011). Fifth Graders' Representations And Reasoning On Constant Growth Function Problems: Connections Between Problem Representations, Student Work And Ability To Generalize. Disertasi. Department Of Teaching, Learning, And Sociocultural Studies. The University Of Arizona.
Shadiq, F. (2004). Pemecahan Masalah, Penalaran dan Komunikasi Matematika. Yogyakarta, P4TK Matematika.
Soedjadi. (2000). Kiat Pendidikan Matematika di Indonesia. Jakarta, Dirjen DIKTI Departemen Pendidikan Nasional.
Twohill , A. (2013). Algebraic reasoning in primary school: Developing a framework of growth points. Smith, C. (Ed.) Proceedings of the British Society for Research into Learning Mathematics 33(2)
Van Ameron, B. A. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics, 54, 63-75.
Watson, A. (2007). Key Understanding of Mathematics Learning. Paper 6: Algebraic Reasoning. Nuffield Foundation. University of Oxford.
Windsor, W. (2009). Algebraic Thinking- More to Do with Why, Than X and Y. Proceedings of the 10th International Conference “Models in Developing Mathematics Education”. The Mathematics Education into the 21st Century Project.
Yachel, E. (1997). A Foundation of Algebraic Reasoning in The Early Grades. Teaching Children Mathematics 3. 276-800.