Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2017-07-02

Membangun koneksi matematis siswa dalam pemecahan masalah verbal

Universitas Negeri Malang
Universitas Islam Negeri (UIN) Maulana Malik Ibrahim
Koneksi Matematis Pemecahan Masalah Soal Cerita Verbal

Galleys

Abstract

[Bahasa]: Penelitian ini mendeskripsikan proses membangun koneksi matematis dalam pemecahan masalah verbal atau soal cerita. Pada proses penyelesaian masalah verbal, diidentifikasi beberapa jenis koneksi yang dibangun siswa. Jenis soal dikembangkan berdasarkan karakteristik koneksi matematis menurut NCTM, yaitu koneksi antar topik matematika, koneksi dengan disiplin ilmu lain, dan koneksi dalam kehidupan sehari-hari. Pengumpulan data dilakukan melalui hasil kerja siswa dan wawancara semi terstruktur terhadap 2 orang subjek yang dipilih dengan tehnik purposive sampling. Penelitian ini mengunkap ada tujuh jenis koneksi yang dibangun oleh siswa pada saat menyelesaikan masalah verbal, yaitu: koneksi pemahaman, koneksi jika maka, koneksi representasi yang setara, koneksi hirarki, koneksi perbandingan melalui bentuk umum, koneksi prosedur, dan koneksi justifikasi dan representasi.

Kata kunci:   Koneksi Matematis; Pemecahan Masalah; Soal Verbal

[English]: The current research aims to describe the process of developing mathematical connection in solving verbal or word mathematics problems. In solving problems, the mathematical connections developed by the subjects are identified. The mathematics problems refer to the characteristics of mathematical connections by NCTM, i.e. connections within mathematics topics, connection with other fileds, and connections with daily life. Data collection is conducted through students’ work and semi-structure interview with two subjects. The subjects are selected through purposive sampling. This research reveals seven kinds of mathematical connections developed by the subjects in solving verbal mathematics problems, i.e. connection in understanding, if then connection, equal representation connection, hierarchy connection, proportion connection through general form, procedure connection, and justification and representation connection.   

Keywords: Mathematical Connection; Problem Solving; Verbal Problems

Downloads

Download data is not yet available.

References

Acosta, E. (2010). Making mathematics word problem reliable measures of students mathematics abilities. Journal of Mathematics Education, 3(1), 15-26.
Angeli, C., & Valanides, N. (2012). Epistemological beliefs and ill-structured problem-solving in SOLO and paired contexts. Educational Technology & Society, 15 (1), 2–14.
Anthony, G., & Walshaw, M. (2009). Characteristics of effective teaching of mathematics: a view from the west. Journal of Mathematics Education, 2(2), 147 – 164.
Baki, A., Cathoglu, H., Costu, S., & Brigin, O. (2009). Conceptions of high school students about mathematical connections to the real-life. Procedia Social and Behavioral Sciences, 1, 1402–1407.
Bernardo, A. B. (1999). Overcoming obstacles in understanding and solving word problems in mathematics. Educational Psychology: An International Journal of Experimental Educational Psychology, 19(2), 144-163.
Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections. Unpublished PhD thesis, Simon Fraser University, Barnaby, Canada.
Coxford, A. F. (1995). The case for connections. Dalam P. A. House & A. F. Coxford (Eds). Connecting Mathematics Across The Curriculum (pp 3 – 12). Reston VA: NCTM.
Creswell. (2015). Planning, conducting, and evaluating quantitave and qualitative research. Universty of Nebraska-Lincoln; Pearson.
Evitts, T. A. (2004). Investigating the mathematical connections that pre-service teachers use and develop while solving problems from reform curricula. Unpublished doctoral dissertation, Pennsylvania State University.
Hiebert, J & Carpenter, T. (1992). Learning and teaching with understanding. Dalam D. Grouws (Ed), Handbook of Research on Mathematics Teaching and Learning (pp. 65 – 97). New York: Macmillan.
Hong, S. Y & Diamond, K. E. (2012). Two approaches to teaching young children sciences concepts, vocabulary, and scientific problem solving skills. Early Childhood Research Quarterly, 27(2), 295-305. Doi: 10.1016/j.ecresq.2011.09.006.
Hong, Y. J & Kim. M. (2015). Mathematical abstraction in the solving of ill- structured problem by elementary school students in Korea. Eurasia Journal of Mathematics, Science & Technology Education, 2016, 12(2), 267 – 281.
Hou, H. T. (2011). A case study of online instructional collaborative discussion activities for problem-solving using situated scenarios: An examination of content and behavior cluster analysis. Computers & Education, 56(3), 712-719. Doi: 10.1016/j.compedu.2010.10.013.
Jeniffer, A., Margaret, J., & Mohr, S. (2011). Exploring mathematical connection of prospective middle - grades teachers through card - sorting tasks. Math Ed Res J, 23, 297 – 319. Doi: 10.1007/s13394–011–0017–0.
Marshall, S. (1995). Schemas in problem solving. Cambridge: Cambridge University Press.
National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author.
Ozturk, T & Guven, B. (2015). Evaluating students’ beliefs in problem solving process: A case study. Eurasia Journal of Mathematics, Science & Technology Education, 12(2), 411-429.
Palm, T. (2009). Theory of authentic task situations. Dalam L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words And Worlds: Modelling Verbal Descriptions of Situations (pp.3–19). Rotterdam: Sense Publishers.
Polya, G. (1973). How to solve it. Princeton, USA: Princeton University Press.
Serin, O., Serin, N. B., & Saygılı G. (2009). The effect of educational technologies and material supported science and technology teaching on the problem solving skills of 5th grade primary school student. Procedia Social and Behavioral Sciences, 1(1), 665-670. Doi: 10.1016/j.sbspro.2009.01.116.
Shamir, A., Zion, M., & Levi, O. S. (2008). Peer tutoring, metacognitive processes and multimedia problem-based learning: the effect of mediation training on critical thinking. Journal of Science Education and Technology, 17(4), 384-398. Doi: 10.1007/s10956-008-9108-4.
Sepeng, P., & Webb, P. (2012). Exploring mathematical discussion in word problem-solving. Pythagoras, 33(1), Art. #60. Doi: 10.4102/pythagoras. v33i1.60.
Singletary, L. M. (2012). Mathematical connections made in practice: An examination of teachers’ beliefs and practices. Unpublished dissertation, University of Georgia, Athens, GA.
Skemp, R. R. (1987). The psychology of learning mathematics. Harmondsworth, England: Penguin.
Stylianou, D. (2013). An examination of connections in mathematical processes in students’ problem solving: connections between representing and justifying. Journal of Education and Learning, 2 (2).
Suominen, L.A. (2015). Abstract algebra and secondary school mathematics: identifying and classifying mathematical connections. Unpublished PhD thesis, The University of Georgia.
Toulmin, S. E. (2008). The layout of arguments. Dalam J. E. Adler & L. J. Rips (Eds.), Reasoning: Studies of human inference and its foundations. (pp. 652-677). New York: Cambridge University Press.
Williams, K. M. (2003). Writing about the problem solving process to improve problem solving performance. The Mathematics Teacher, 96(3), 185 – 187.
Zazkis, R. (2000). Factors, devisors and multiples: Exploring the web of student’s connections. CBMS Issues in Mathematics Education, 8, 210 – 238.

How to Cite

Tasni, N., & Susanti, E. (2017). Membangun koneksi matematis siswa dalam pemecahan masalah verbal. Beta: Jurnal Tadris Matematika, 10(1), 103–116. https://doi.org/10.20414/betajtm.v10i1.108