Skip to main content Skip to main navigation menu Skip to site footer
Figure 4. Mathematical proficiency questions
Articles
Published: 2024-05-30

Local instruction theory in the realistic mathematics education approach to improve students' mathematical proficiency in linear equation topics

Institut Agama Islam Negeri Ternate
Institut Agama Islam Negeri Ternate
Institut Agama Islam Negeri Ternate
Local instruction theory Mathematical proficiency Linear equation Realistic mathematics education

Galleys

Abstract

[English]: The present study examines the improvement of students' mathematical proficiency in linear equation topics using local instruction theory (LIT) with a realistic mathematics education (RME) approach. This research employed a quasi-experiment, one-group pretest-posttest design. The sample was 37 secondary school students at SMP Negeri 1 South Halmahera, class VIII. The instrument used is a mathematical proficiency test consisting of 4 essay questions. Data were analyzed using the prerequisite test, Mann-Whitney test, Cohens (d) effect sizes test, and the gain value was determined. As a result, there are differences in students’ mathematical proficiency before and after implementing LIT through the RME approach. The influence of LIT with the RME approach on mathematics proficiency is very high. The students can define a linear equation, determine the slope of the line, construct a linear equation, integrate the linear graphs, and determine solutions for the linear equation problems.

[Bahasa]: Penelitian ini mengkaji peningkatan kemampuan matematis siswa pada materi persamaan garis lurus menggunakan local instruction theory (LIT) melalui pendekatan realistic mathematics education (RME). Penelitian ini menggunakan desain quasi-eksperimen, one-group pretest-posttest. Sampel penelitian adalah siswa SMP Negeri 1 Halmahera Selatan kelas VIII sebanyak 37 orang. Instrumen yang digunakan berupa tes kemampuan matematis yang terdiri atas 4 soal essai. Data dianalisis menggunakan uji prasyarat, uji Mann-Whitney, uji Cohens (d) effect sizes, dan juga dilakukan perhitungan nilai gain. Hasil penelitian menunjukkan bahwa terdapat perbedaan kemampuan matematis antara sebelum dan setelah penerapan LIT dengan pendekatan RME. Pengaruh LIT dengan pendekatan RME terhadap kemampuan matematis siswa berkategori sangat tinggi. Siswa mampu mendefinisikan persamaan garis lurus, mampu menentukan kemiringan suatu garis lurus, dapat menyusun persamaan garis lurus, mengintegrasikan suatu grafik garis lurus, dan menentukan solusi dari masalah yang berkaitan dengan persamaan garis lurus.

Downloads

Download data is not yet available.

References

  1. Altarawneh, A. F., & Marei, S. T. (2021). Mathematical proficiency and preservice classroom teachers’ instructional performance. International Journal of Education and Practice, 9(2), 354–364. https://doi.org/10.18488/journal.61.2021.92.354.364
  2. Altaylar, B., & Kazak, S. (2021). The effect of realistic mathematics education on sixth grade students’ statistical thinking. Acta Didactica Napocensia, 14(1), 76–90. https://doi.org/10.24193/adn.14.1.6
  3. Angraini, L. M., Larsari, V. N., Muhammad, I., & Kania, N. (2023). Generalizations and analogical reasoning of junior high school viewed from Bruner's learning theory. Infinity, 12(2), 291–306. https://doi.org/10.22460/infinity.v12i2.p291-306
  4. Ardiniawan, D. Y., Subiyantoro, S., & Kurniawan, S. B. (2023). Effectiveness of the RME (realistic mathematical education) approach to learning achievement in view of students’ mathematic reasoning. QALAMUNA: Jurnal Pendidikan, Sosial, dan Agama, 14(2), 783-800. https://doi.org/10.37680/qalamuna.v14i2.3520
  5. Arini, A. (2019). Development of local instruction theory of multiplication based on realistic mathematics education in primary schools. International Journal of Educational Dynamics, 1(1), 188–204. https://doi.org/10.24036/ijeds.v1i1.54
  6. Armiati, A., Fauzan, A., Harisman, Y., & Sya’bani, F. (2022). Local instructional theory of probability topics based on realistic mathematics education for eight-grade students. Journal on Mathematics Education, 13(4), 703–722. https://doi.org/10.22342/jme.v13i4.pp703-722
  7. Bakker, A., van Eerde, D. (2015). An Introduction to design-based research with an example from statistics education. In: Bikner-Ahsbahs, A., Knipping, C., Presmeg, N. (eds) Approaches to Qualitative Research in Mathematics Education. Advances in Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9181-6_16
  8. Bayrak, A., & Aslanci, S. (2022). Realistic mathematics education: A bibliometric analysis. International Journal of Education, 10(4), 52–62. https://doi.org/10.1007/978-94-007-4978-8_170
  9. Bustang, B., Zulkardi, Z., Darmawijoyo, D., Dolk, M., & van Eerde, D. (2013). Developing a local instruction theory for learning the concept of angle through visual field activities and spatial representations. International Education Studies, 6(8), 58–70. https://doi.org/10.5539/ies.v6n8p58
  10. Cahyaningsih, U., Jatisunda, M.G., Kurniawan, D.T., Nahdi, D.S., Utami, W.P., & Halipah, R. (2023). Implementing problem-based learning to enhance students’ mathematical proficiency in primary school. Jurnal Didaktik Matematika, 10(2), 281–299. https://doi.org/10.24815/jdm.v10i2.32615
  11. Çakıroğlu, Ü., Güler, M., Dündar, M., & Coşkun, F. (2023). Virtual reality in realistic mathematics education to develop mathematical literacy skills. International Journal of Human–Computer Interaction, 1–13. https://doi.org/10.1080/10447318.2023.2219960
  12. Cárcamo, A., Fuentealba, C., & Garzón, D. (2019). Local instruction theories at the university level: An example in a linear algebra course. Eurasia Journal of Mathematics, Science and Technology Education, 15(12), em1781. https://doi.org/10.29333/ejmste/108648
  13. Corrêa, P. D., & Haslam, D. (2020). Mathematical proficiency as the basis for assessment: A literature review and its potentialities. Mathematics Teaching-Research Journal, 12(4), 3–20. https://commons.hostos.cuny.edu/mtrj/wp-content/uploads/sites/30/2021/01/v12n4-Mathematical-Proficiency-as-the-Basis-for-Assessment.pdf
  14. Creswell, J. (2015). Educational research, planning, conducting, and evaluating quantitative and qualitative (5th ed.). Pearson Education, Inc.
  15. Da, N. T. (2023). Realistic mathematics education and authentic learning: A combination of teaching mathematics in high schools. Journal of Mathematics and Science Teacher, 3(1), em029. https://doi.org/10.29333/mathsciteacher/13061
  16. Das, K. (2020). Realistic mathematics & Vygotsky’s theories in mathematics education. Shanlax International Journal of Education, 9(1), 104–108. https://doi.org/10.34293/education.v9i1.3346
  17. Dewi, N., Talib, A., & Djam’an, N. (2021). Student difficulties in learning mathematics based on learning styles. Advances in Social Science, Education and Humanities Research, 611, 11–18. https://www.atlantis-press.com/proceedings/icoesm-21/125965695
  18. Ding, L., Jones, K., Pepin, B., & Sikko, S. A. (2014). An expert teacher’s local instruction theory underlying a lesson design study through school-based professional development. North American Chapter of the Psychology of Mathematics Education, 2, 401–408. https://files.eric.ed.gov/fulltext/ED599772.pdf
  19. Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6(2), 105–128. https://doi.org/10.1207/s15327833mtl0602_3
  20. Hafidah, H., & Rukli, R. (2022). Treatment slow learner learning repetitive addition with realistic mathematics learning approach. Mimbar Sekolah Dasar, 9(3), 396–412. https://doi.org/10.53400/mimbar-sd.v9i3.48586
  21. Hastuti, E., & Fauzan, A. (2019). Penerapan local instructional theory menggunakan pendekatan RME untuk meningkatkan hasil belajar siswa di sekolah dasar. Jurnal Basicedu, 3(2), 271–276. https://doi.org/10.31004/basicedu.v3i2.2
  22. Junpeng, P., Marwiang, M., Chiajunthuk, S., Suwannatrai, P., Chanayota, K., Pongboriboon, K., Tang, K. N., & Wilson, M. (2020). Validation of a digital tool for diagnosing mathematical proficiency. International Journal of Evaluation and Research in Education, 9(3), 665–674. https://doi.org/10.11591/ijere.v9i3.20503
  23. Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2018). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement?. Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569-578. https://doi.org/10.12973/ejmste/76959
  24. Li, Y., Howe, R. E., Lewis, W. J., & Madden, J. J. (2021). Developing mathematical proficiency for elementary instruction: An introduction. In Y Li, R. E. Howe, W. J. Lewis, & J. J. Madden (Eds.), Developing mathematical proficiency for elementary instruction. Advances in STEM education (pp. 3–9). Springer, Cham. https://doi.org/10.1007/978-3-030-68956-8_1
  25. Ling, A. N. B., & Mahmud, M. S. (2023). Challenges of teachers when teaching sentence-based mathematics problem-solving skills. Frontiers in Psychology, 13, 1074202. https://doi.org/10.3389/fpsyg.2022.1074202
  26. Mokhtar, N., Xuan, L. Z., Lokman, H. F., & Mat, N. H. C. (2023). Theory, literature review, and fun learning method effectiveness in teaching and learning. International Journal of Social Science and Education Research Studies, 3(8), 1738–1744. https://doi.org/10.55677/ijssers/V03I8Y2023-30
  27. Moleko, M. M., & Mosimege, M. D. (2021). Flexible teaching of mathematics word problems through multiple means of representation. Pythagoras, 42(1), 1–10. https://doi.org/10.4102/pythagoras.v42i1.575
  28. Muhlisin, A., Sarwanti, S., Jalunggono, G., Yusliwidaka, A., Mazid, S., & Mohtar, L. E. (2022). Improving students’ problem-solving skills through RIAS model in science classes. Jurnal Cakrawala Pendidikan, 41(1), 284–294. https://doi.org/10.21831/cp.v41i1.47263
  29. National Research Council. (2001). Adding it up: Helping children learn mathematics. J. Kilpatrick, J. Swafford, and B. Findell (Eds.). Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
  30. Nickerson, S. D., & Whitacre, I. (2010). A local instruction theory for the development of number sense. Mathematical Thinking and Learning, 12(3), 227–252. https://doi.org/10.1080/10986061003689618
  31. Nugraheni, L. P., & Marsigit, M. (2021). Realistic mathematics education: An approach to improve problem solving ability in primary school. Journal of Education and Learning, 15(4), 511–518. https://doi.org/10.11591/edulearn.v15i4.19354
  32. OECD. (2022). PISA 2022 mathematics framework. Paris: OECD Publishing.
  33. Phaniew, S., Junpeng, P., & Tang, K. N. (2021). Designing standards-setting for levels of mathematical proficiency in measurement and geometry: Multidimensional item response model. Journal of Education and Learning, 10(6), 103–111. https://doi.org/10.5539/jel.v10n6p103
  34. Prahmana, R. C. I. (2017). Design research (teori dan implementasinya: Suatu pengantar). Jakarta: Rajawali Pers.
  35. Prahmana, R. C. I., & Suwasti, P. (2014). Local instruction theory on division in mathematics gasing: The case of rural area’s student in Indonesia. Journal on Mathematics Education, 5(1), 17–26. http://dx.doi.org/10.22342/jme.5.1.1445.17-26
  36. Purwasih, R., Turmudi, & Dahlan, J. A. (2024). How do you solve number pattern problems through mathematical semiotics analysis and computational thinking?. Journal on Mathematics Education, 15(2), 403–430. http://doi.org/10.22342/jme.v15i2.pp403-430
  37. Putri, D. R., & Hidayati, N. (2022). Mathematical problem solving ability of junior high school students on straight line equations. Unnes Journal of Mathematics Education Research, 11(2), 6–11. Retrieved from https://journal.unnes.ac.id/sju/ujmer/article/view/67166
  38. Retnawati, H., & Wulandari, N. F. (2019). The development of students’ mathematical literacy proficiency. Problems of Education in the 21st Century, 77(4), 502–514. https://doi.org/10.33225/pec/19.77.502
  39. Revina, S., & Leung, F. K. S. (2021). Issues involved in the adoption of realistic mathematics education in Indonesian culture. Compare, 51(5), 631–650. https://doi.org/10.1080/03057925.2019.1650636
  40. Samura, A. O., & Darhim. (2023). Improving mathematics critical thinking skills of junior high school students using blended learning model (BLM) in geogebra assisted mathematics learning. International Journal of Interactive Mobile Technologies, 17(02), 101–117. https://doi.org/10.3991/ijim.v17i02.36097
  41. Samura, A. O., & Habsyi, R. (2023). Application of the blended learning model to improve the mathematical creative thinking skills of geogebra-assisted junior high school students in mathematics lessons. European Journal of Mathematics and Science Education, 4(2), 149–159. https://doi.org/10.12973/ejmse.4.2.149
  42. Şanal, S. Ö., & Elmali, F. (2023). Effectiveness of realistic math education on mathematical problem-solving skills of students with learning disability. European Journal of Special Needs Education, 39(1), 109–126. https://doi.org/10.1080/08856257.2023.2191110
  43. Schoenfeld, A. H., & Mathematical Sciences Research Institute. (2007). What is mathematical proficiency and how can it be assessed? In A. H. Schoenfeld (Ed.), Assessing Mathematical Proficiency (pp. 59–74). chapter, Cambridge: Cambridge University Press.
  44. Siagian, M. D., Suryadi, D., Nurlaelah, E., Tamur, M., & Sulastri, R. (2021). Investigating students’ concept image in understanding variables. Journal of Physics: Conference Series, 1882(1), 012058. http://doi.org/10.1088/1742-6596/1882/1/012058
  45. Supriatna, T., Darhim, D., & Turmudi, T. (2017). Local intruction theory dalam pendidikan matematika realistik untuk menumbuhkan kemampuan berpikir logis. MIMBAR PENDIDIKAN: Jurnal Indonesia untuk Kajian Pendidikan, 2(2), 173–184. https://doi.org/10.17509/mimbardik.v2i2.8627
  46. Suryadi, D., Itoh, T., & Isnarto. (2023). A prospective mathematics teacher’s lesson planning: An in-depth analysis from the anthropological theory of the didactic. Journal on Mathematics Education, 14(4), 723–740. http://doi.org/10.22342/jme.v14i4.pp723-740
  47. Sutarni, S., & Aryuana, A. (2023). Realistic mathematics education (RME): Implementation of learning models for improving HOTS-oriented mathematics problem-solving ability. AL-ISHLAH: Jurnal Pendidikan, 15(2), 1213–1223. https://doi.org/10.35445/alishlah.v15i2.2127
  48. Tong, D. H., Nguyen, T. T., Uyen, B. P., Ngan, L. K., Khanh, L. T., & Tinh, P. T. (2022). Realistic mathematics education’s effect on students’ performance and attitudes: A case of ellipse topics learning. European Journal of Educational Research, 11(1), 403–421. https://doi.org/10.12973/eu-jer.11.1.403
  49. Ventistas, G., Ventista, O. M., & Tsani, P. (2024). The impact of realistic mathematics education on secondary school students’ problem-solving skills: A comparative evaluation study. Research in Mathematics Education, 1–25. https://doi.org/10.1080/14794802.2024.2306633
  50. Wijayanti, D. A., Sampoerno, P. D., & Hajizah, M. N. (2022). The local instructional theory on introducing concept of functions. ITALIENISCH, 12(2), 1153–1160.
  51. Wijayanto, P. W., Lumbantoruan, J. H., Judijanto, L., Mardikawati, B., & Huda, N. (2024). Mathematics teachers in teaching 4C skills: School-university perspective. Journal of Education Research and Evaluation, 8(1), 195–206. https://doi.org/10.23887/jere.v8i1.67895

How to Cite

Ode Samura, A., Im, R., & Ruslan, J. (2024). Local instruction theory in the realistic mathematics education approach to improve students’ mathematical proficiency in linear equation topics. Beta: Jurnal Tadris Matematika, 17(1), 59–76. https://doi.org/10.20414/betajtm.v17i1.624