http://jurnalbeta.ac.id/index.php/betaJTM/issue/feed Beta Jurnal Tadris Matematika 2018-04-19T06:48:51+00:00 Kamirsyah Wahyu kwahyu@uinmataram.ac.id Open Journal Systems <nav> <div id="nav-tab" class="nav nav-tabs" role="tablist"><a id="nav-about-tab" class="nav-item nav-link active" role="tab" href="#nav-about" data-toggle="tab" aria-controls="nav-about" aria-selected="true">Aim &amp; Scopes</a> <a id="nav-profile-tab" class="nav-item nav-link" role="tab" href="#nav-profile" data-toggle="tab" aria-controls="nav-profile" aria-selected="false">Indexing Sites</a> <a id="nav-contact-tab" class="nav-item nav-link" role="tab" href="#nav-contact" data-toggle="tab" aria-controls="nav-contact" aria-selected="false">FAQs</a> <a id="nav-stats-tab" class="nav-item nav-link" role="tab" href="#nav-stats" data-toggle="tab" aria-controls="nav-stats" aria-selected="false">Visitors Stats</a> <a id="nav-call-tab" class="nav-item nav-link" role="tab" href="#nav-call" data-toggle="tab" aria-controls="nav-call" aria-selected="false">Call for Papers</a></div> </nav> <div id="nav-tabContent" class="tab-content"> <div id="nav-about" class="tab-pane fade show active" role="tabpanel" aria-labelledby="nav-about-tab"> <div style="border: 0.01px solid #eee; border-radius: 4px; padding: 15px 30px 15px 15px;"><br> <p><strong>Bετα</strong>: Jurnal Tadris Matematika</p> <p>ISSN: <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1329365050&amp;1&amp;&amp;">2085-5893</a> (Print) | ISSN: <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1474344579&amp;1&amp;&amp;">2541-0458</a> (Electronic)</p> <p>It is <strong>scientific</strong>, <strong>peer-reviewed</strong>, and <strong>open access</strong> journal managed and published by Program Studi Tadris Matematika Universitas Islam Negeri (UIN) Mataram <strong>in collaboration with</strong> <a href="http://ad-apsmapeta.or.id/?p=198">Asosiasi Dosen Matematika dan Pendidikan Matematika PTKIN</a> (Ad-Mapeta) half-yearly on <strong>May</strong> and <strong>November</strong>. It aims to be open access journal platform which publishes and disseminates the ideas and researches on mathematics learning*. Its focus is to publish original research and/or library analysis on how students learn mathematics and how mathematics is taught in primary, secondary or undergraduate level.</p> <p>To maintain the focus, the scope of the published articles will be as follows:</p> <p><strong>1. Developing mathematics learning integrated with values or character</strong><br> This scope deals with researches to explore mathematics learning from affective if we refer to the view of Markku. S. Hanula or socio-cultural perspective from the works of Alan J. Bishop and Third Wave Project.</p> <p><strong>2. Developing mathematics learning based on the constructivist perspective</strong><br> Learning mathematics is not the transfer of knowledge but the construction of knowledge. This scope refers to researches on the teachers' effort from primary until undergraduate to support and enhance students' roles and engagement in constructing mathematics knowledges and skills. It is not only about the achievement of students but also the process of learning which develop problem solving, reasoning and proof, representations, connections, communications, and high order thinking.</p> <p><strong>3. The development of technological-based mathematics learning tools and its use in mathematics classroom</strong><br> The product of technology can be employed to support mathematics learning. Thus, researches on the development of mathematics learning tools using technology especially digital technology and its practices in mathematics classrooms are important part of journal scopes. <br> <br><strong>4. The development of pedagogical content knowledge for in-service and prospective mathematics teachers</strong><br> One of mathematics education research focuses nowadays is prospective mathematics teachers. This scope includes all attempts to prepare and support prospective mathematics teachers on pedagogical content knowledge.</p> <p>*The term 'mathematics learning' involves both teaching and learning of mathematics</p> <p>For further information about this journal, please visit&nbsp; <a href="http://jurnalbeta.ac.id/index.php/betaJTM/submit">Article Submission Guidelines</a> | <a href="http://jurnalbeta.ac.id/index.php/betaJTM/guide">Author Guidelines</a> | <a href="http://jurnalbeta.ac.id/index.php/betaJTM/about#policies">Journal Policies</a> | Article Template in <a href="https://drive.google.com/file/d/11ASmr7DU43oe6lgMImVsCULeeZpIzy4O/view?usp=sharing">Bahasa Indonesia</a> or <a href="https://drive.google.com/file/d/1eUBzVcC65UIWmOS_V9tYkP6m2ypx5pc9/view?usp=sharing">English</a></p> <p><strong>Bετα</strong>: Jurnal Tadris Matematika is <strong>licensed</strong> under a <a href="http://creativecommons.org/licenses/by-nc/4.0/" rel="license">Creative Commons Attribution-NonCommercial 4.0 International License</a></p> </div> </div> <div id="nav-profile" class="tab-pane fade" role="tabpanel" aria-labelledby="nav-profile-tab"> <div style="border: 0.01px solid #eee; border-radius: 4px; padding: 15px 30px 15px 15px;"><br> <p><strong> Citation &amp; Index Profiles</strong></p> <p><img src="http://jurnalbeta.ac.id/public/site/images/admin/scholar1.png"> <a href="https://scholar.google.co.id/citations?user=GB2h1rcAAAAJ&amp;hl=en">Google Scholar</a> (January 2018)</p> <table id="gsc_rsb_st" style="height: 122px;" width="256"> <tbody> <tr> <th class="gsc_rsb_sc1" style="text-align: left;">Citation indices</th> <th class="gsc_rsb_sth" style="text-align: left;">All</th> <th class="gsc_rsb_sth">Since 2012</th> </tr> <tr> <td class="gsc_rsb_sc1">Citations</td> <td class="gsc_rsb_std">42</td> <td class="gsc_rsb_std" style="text-align: center;">42</td> </tr> <tr> <td class="gsc_rsb_sc1">h-index</td> <td class="gsc_rsb_std">3</td> <td class="gsc_rsb_std" style="text-align: center;">3</td> </tr> <tr> <td class="gsc_rsb_sc1">i10-index</td> <td class="gsc_rsb_std">0</td> <td class="gsc_rsb_std" style="text-align: center;">0</td> </tr> </tbody> </table> <hr> <p><img src="http://jurnalbeta.ac.id/public/site/images/admin/sinta1.png"> <a href="http://sintadev.ristekdikti.go.id/journals/detail?id=65">SINTA Ristek Dikti</a></p> <p><small><strong>SINTA 3 Journal </strong></small></p> <hr> <p><img src="http://jurnalbeta.ac.id/public/site/images/admin/doaj2.png"> <a href="https://doaj.org/toc/2541-0458?source=%7B%22query%22%3A%7B%22filtered%22%3A%7B%22filter%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22term%22%3A%7B%22index.issn.exact%22%3A%222541-0458%22%7D%7D%2C%7B%22term%22%3A%7B%22_type%22%3A%22article%22%7D%7D%5D%7D%7D%2C%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%7D%7D%2C%22from%22%3A0%2C%22size%22%3A100%7D">Directory of Open Access Journals</a></p> <p><small><em>Green thick</em><strong> <img src="http://jurnalbeta.ac.id/public/site/images/admin/tick_short.png" width="21" height="21"></strong></small></p> <hr> <h6>Bετα: Jurnal Tadris Matematika is indexed by:</h6> <p><a href="https://doaj.org/toc/2541-0458?source=%7B%22query%22%3A%7B%22filtered%22%3A%7B%22filter%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22term%22%3A%7B%22index.issn.exact%22%3A%222541-0458%22%7D%7D%2C%7B%22term%22%3A%7B%22_type%22%3A%22article%22%7D%7D%5D%7D%7D%2C%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%7D%7D%2C%22from%22%3A0%2C%22size%22%3A100%7D">DOAJ</a> | <a href="http://atoz.ebsco.com/Titles/SearchResults/8623?SearchType=Contains&amp;Find=beta+jurnal+tadris+matematika&amp;GetResourcesBy=QuickSearch&amp;resourceTypeName=allTitles&amp;resourceType=&amp;radioButtonChanged=">EBSCO</a> | <a href="http://search.crossref.org/?q=beta+jurnal+tadris+matematika&amp;publication=Beta+Jurnal+Tadris+Matematika">CrossRef</a> | <a href="http://sintadev.ristekdikti.go.id/journals/detail?id=65">Sinta (Science and Technology Index) </a>| <a href="https://scholar.google.co.id/citations?user=GB2h1rcAAAAJ&amp;hl=en">Google Scholar</a> | <a href="http://moraref.kemenag.go.id/archives/journal?q=Beta+Jurnal+Tadris+Matematika&amp;prefix=">Moraref</a></p> <p><a href="http://onesearch.id/Search/Results?type=AllFields&amp;filter%5B%5D=repoId%3A%22IOS4140%22&amp;sort=title">Indonesia One Search</a> | <a href="http://id.portalgaruda.org/?ref=browse&amp;mod=viewjournal&amp;journal=7513">Indonesian Publication Index</a> | <a href="http://index.pkp.sfu.ca/index.php/browse/index/2503">PKP INDEX</a> | <a href="http://www.citeulike.org/user/BetaJurnalTadrisMatematika/library">CiteULike</a> | <a href="https://www.base-search.net/Search/Results?q=dccoll%3Aftjbeta&amp;refid=dclink">BASE</a></p> </div> </div> <div id="nav-contact" class="tab-pane fade" role="tabpanel" aria-labelledby="nav-contact-tab"> <div style="border: 0.01px solid #eee; border-radius: 4px; padding: 15px 30px 15px 15px;"><br> <p><strong>Frequently Asked Questions</strong></p> <p><strong>Q</strong>: What is the scope of <strong>Bετα</strong>: Jurnal Tadris Matematika?<br><strong>A</strong>: This journal publishes original research article on how students learn mathematics and mathematics is taught. In details, you can read <a href="http://jurnalbeta.ac.id/index.php/betaJTM/about#aimsScope">Aims &amp; Scope</a>!</p> <p><strong>Q</strong>: How do I publish articles in <strong>Bετα</strong>: Jurnal Tadris Matematika?<br><strong>A</strong>: To publish your article, you must prepare your article in .docs format using available article template in <a href="https://drive.google.com/file/d/11ASmr7DU43oe6lgMImVsCULeeZpIzy4O/view?usp=sharing">Bahasa Indonesia</a> or <a href="https://drive.google.com/file/d/1eUBzVcC65UIWmOS_V9tYkP6m2ypx5pc9/view?usp=sharing%20">English</a>, register, login, and follow the submission process</p> <p><strong>Q</strong>: How the submitted articles in <strong>Bετα</strong>: Jurnal Tadris Matematika are published?<br><strong>A</strong>: The submitted articles will go through a number of stages which refer to P<a href="http://jurnalbeta.ac.id/index.php/betaJTM/about/aboutThisPublishingSystem">KP OJS Editorial and Publishing Process</a>.</p> <p>In our journal, the submitted articles will be processed as follows:</p> <p>1. The submitted articles will checked for the format and plagiarism using Plagiarism Checker X. If the format of articles do not meet the article template and/or they have over 10% plagiarized content, the assigned editor will send back the articles to be revised</p> <p>2. If the articles fully meet the format of article template and pass plagiarism check, the assigned editor will have initial review for the fitness of focus and scope. If the articles meet the focus and scope of the journal, they will be sent to peer-reviewers. Point (1) and (2) will take <strong>max. two weeks</strong>. If not, please contact the editor in chief</p> <p>3. The submitted articles will be peer-reviewed by two reviewers (double-blind). It will take <strong>max. four weeks</strong></p> <p>4. After the reviewers accomplished their task and submit their recommendation, the editorial team will discuss the final decision. This will <strong>take 2-3 days</strong>. The decision will be four kinds; accept without revision, accept with revision, re-submit for review, and decline.</p> <p>5. The submitted articles mostly had been accepted with minor or major revisions. For this decision, the assigned editor will request for revision</p> <p>6. The authors will have <strong>20 days for revision</strong>. Otherwise, the articles will be cosidered as the new submission, postphoned for publication in upcomng issue or even declined</p> <p>7. After the authors revise the reviewed articles, the editorial team will review them to check whether or not the revisions have fulfilled the reviewers' notes or comments. If not, the articles will be sent back to author for another revision until the revisions accomplished</p> <p>8. If the revisions are done, the articles will be copyedited, layouted, and proofread. So, after revisions, the authors need to stay tuned for copyedited and proofread.</p> <p>9. In a normal condition, all the editorial process until the articles get published will take <strong>about eight weeks</strong>.</p> <p><strong>Q</strong>: Is there any cost for submission, processing and publication in <strong>Bετα</strong>: Jurnal Tadris Matematika?<br><strong>A</strong>: No. It is all free.</p> <p><strong>Q</strong>: After submission, are the authors permitted to withdraw his/her articles?<br><strong>A</strong>: Not at all. Please see <a href="http://jurnalbeta.ac.id/index.php/betaJTM/about#policies">Policies</a></p> <p><strong>Q</strong>: Who hold the copyright for the published articles?<br><strong>A</strong>: The journal. However, the reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, etc. , will be allowed with a written permission from the journal.</p> <p><strong>Q</strong>: Is there min. or max. number of author for one article?<br><strong>A</strong>: Single author is allowed. The max. is 5 authors</p> <p><strong>Q</strong>: Will the authors get printed versions?<br><strong>A</strong>: No. We will just provide full issue (pdf) includes cover and front matter</p> </div> </div> <div id="nav-stats" class="tab-pane fade" role="tabpanel" aria-labelledby="nav-stats-tab"> <div style="border: 0.01px solid #eee; border-radius: 4px; padding: 15px 30px 15px 15px;"><br> <div>Visitors stats since October 2016</div> <p><a title="Web Analytics" href="http://statcounter.com/" target="_blank" rel="noopener"><img src="//c.statcounter.com/11140912/0/db58d2c5/0/" alt="Web Analytics"></a> <a href="http://statcounter.com/p11140912/?guest=1">CLICK HERE for Details</a></p> </div> </div> <div id="nav-call" class="tab-pane fade" role="tabpanel" aria-labelledby="nav-call-tab"><br> <div style="border: 0.01px solid #eee; border-radius: 4px; padding: 15px 30px 15px 15px;"> <p><strong>Your Trusted Journal for Scholarly Publications</strong></p> <p>We cordially invite the researchers to submit their articles in <strong>Bahasa</strong> or <strong>English </strong>for <strong>Bετα</strong>: Jurnal Tadris Matematika.</p> <p>The articles submission deadline is as follows:</p> <blockquote> <p><strong>March 30</strong>th<strong> for Issue 1 (May) </strong></p> <p><strong>September 30</strong>th<strong> for Issue 2 (November)</strong></p> </blockquote> <p>For further information about Aims and Scope and Journal Policy,</p> <p>visit <a href="http://jurnalbeta.ac.id/index.php/betaJTM/about#aimsScope">Aims &amp; Scope</a> | <a href="http://jurnalbeta.ac.id/index.php/betaJTM/guide">Author Guidelines</a> | <a href="http://jurnalbeta.ac.id/index.php/betaJTM/about#policies">Journal Policies</a> | Article Template in <a href="https://drive.google.com/file/d/11ASmr7DU43oe6lgMImVsCULeeZpIzy4O/view?usp=sharing">Bahasa Indonesia</a> or <a href="https://drive.google.com/file/d/1eUBzVcC65UIWmOS_V9tYkP6m2ypx5pc9/view?usp=sharing%20">English</a></p> <p><strong>The benefits of publishing your articles in our journal:</strong></p> <p>1. All submitted articles will be <strong>double blind-reviewed</strong> by the qualified reviewers. Our <a href="http://jurnalbeta.ac.id/index.php/betaJTM/reviewers">peer-reviewers</a> will give you constructive comments for further revision</p> <p>2.<strong> Fast notification for further editorial process</strong>. Submitted articles will be initially reviewed by <a href="http://jurnalbeta.ac.id/index.php/betaJTM/about/editorialTeam">Editorial Team</a>, if your articles meet the quality criteria of our journal then they will be sent for double blind review. Otherwise, we would suggest you some related journals. <strong>Note:</strong> When your articles are sent to peer-review, it does not mean that the articles are accepted. Peer-reviewers would be important parties of decision making for accepting and publishing articles</p> <p>3.<strong> Co-operative and responsive editors</strong>. We would try our best to help the authors in revising their reviewed articles.</p> <p>4.<strong> Visibility of your articles</strong>. Our journal has been indexed by nomerous database such as DOAJ as a medium indexing board. Our journal uses latest version Open Journal System which enables the readers read your articles directly from their smarphone through XML Galley without downloading PDF. Try opening this in your smartphone <a href="http://jurnalbeta.ac.id/index.php/betaJTM/article/view/116">Click HERE</a></p> </div> </div> </div> <div>&nbsp;</div> <div><strong>Daily Visits</strong></div> <div id="widgetIframe"><iframe src="http://jurnalbeta.ac.id/piwik/index.php?module=Widgetize&amp;action=iframe&amp;forceView=1&amp;viewDataTable=graphEvolution&amp;widget=1&amp;moduleToWidgetize=VisitsSummary&amp;actionToWidgetize=getEvolutionGraph&amp;idSite=1&amp;period=day&amp;date=yesterday&amp;disableLink=1&amp;widget=1" marginwidth="0" marginheight="0" scrolling="no" width="100%" height="180" frameborder="0"></iframe></div> http://jurnalbeta.ac.id/index.php/betaJTM/article/view/109 Berpikir kritis siswa ditinjau dari gaya kognitif visualizer dan verbalizer dalam menyelesaikan masalah geometri 2018-04-19T06:48:51+00:00 Widodo Winarso widodoiain@gmail.com Widya Yulistiana Dewi yulistianawidya@gmail.com <p><em><strong>[Bahasa]</strong></em>: Strategi siswa dalam menyelesaikan masalah matematika tentunya tidak lepas dari cara siswa menerima dan mengolah informasi yang disebut sebagai gaya kognitif. Siswa mempunyai gaya kognitif yang berbeda ketika belajar. Ada siswa memiliki gaya kognitif visualizer dan ada juga yang memiliki gaya kognitif verbalizer. Perbedaan gaya kognitif tersebut akan memicu kemampuan berpikir kritis siswa. Penelitian ini dilakukan di Madrasah Tsanawiyah Daru’l Hikam Kota Cirebon dengan menggunakan metode kuantitatif jenis kausal-komparatif. Teknik pengambilan sampel menggunakan cluster random sampling, dengan jumlah sampel sebanyak 45 siswa, yaitu 24 siswa visualizer dan 21 siswa verbalizer. Hasil penelitian menunjukkan bahwa siswa visualizer memperoleh nilai rata-rata sebesar 50,15 sedangkan siswa verbalizer memperoleh nilai rata-rata 40,05. Apabila dilihat dari rata-rata persentase hasil tiap aspek berpikir kritis, siswa visualizer dapat dikategorikan cukup baik, sedangkan siswa verbalizer dapat dikategorikan kurang. Hal ini menunjukan bahwa terdapat perbedaan berpikir kritis antara siswa dengan gaya kognitif visualizer dan siswa dengan gaya kognitif verbalizer dalam menyelesaikan masalah geometri.</p> <p><strong>Kata kunci</strong>: <em>Berpikir Kritis; Gaya Kognitif; Pemecahan Masalah; Geometri</em></p> <p><em><strong>[English]</strong>: </em>Student's strategy in solving mathematics problem cannot be separated from the way students receive and process the information which is called as cognitive style. Students have different cognitive styles as they learn. They tend to have visualizer cognitive style and the others have verbalizer. The different cognitive styles will trigger students' critical thinking skills. This research was conducted in Madrasah Tsanawiyah Daru'l Hikam Cirebon using the quantitative method of a causal-comparative. The sampling technique used cluster random sampling, with a total sample of 45 students, 24 students are visualizer and the remaining is verbalizer. The results showed that the visualizer students obtained an average score of 50.15, while the verbalizer students got 40.05. Viewing from the average percentage of the results of each aspect of critical thinking, visualizer students can be categorized quite well, while the verbalizer students can be categorized less. This research implies that there are differences in critical thinking between students with visualizer cognitive style and students with verbalizer in solving geometry problems. </p> <p><strong>Keywords</strong>: <em>Critical Thinking; Cognitive Style; Problem-solving; Geometry</em></p> 2017-11-01T06:12:30+00:00 ##submission.copyrightStatement## http://jurnalbeta.ac.id/index.php/betaJTM/article/view/120 Proses berpikir siswa dalam menyelesaikan masalah geometri: Perbedaan siswa bertemperamen choleric dengan melancholic 2018-04-19T06:48:50+00:00 Miftah Syarifuddin miftahsyarifuddin24031978@gmail.com <p><strong><em>[Bahasa]</em></strong>: Penelitian ini bertujuan untuk mendeskripsikan proses berpikir siswa bertemperamen choleric dan melancholic dalam menyelesaikan masalah geometri. Proses berpikir dalam penelitian ini adalah proses berpikir konseptual atau proses berpikir prosedural. Proses berpikir konseptual meliputi 5 (lima) kompetensi, yaitu menggunakan aturan dasar, melihat pola, menerapkan konsep, mengklarifikasi situasi, dan mengembangkan masalah. Proses berpikir prosedural adalah cara berpikir siswa yang terbiasa menghafal rumus dan menggunakan cara-cara rutin dalam menyelesaikan masalah. Penelitian ini merupakan penelitian deskriptif dengan pendekatan kualitatif. Subjek penelitian terdiri dari 2 (dua) siswa perempuan dengan kemampuan matematika tinggi dan setara di kelas IX Salatiga, Indonesia, terdiri dari 1 (satu) siswa bertemperamen choleric dan 1 (satu) siswa bertemperamen melancholic. Pemilihan subjek penelitian berdasarkan hasil tes temperamen dan hasil tes kemampuan matematika. Data penelitian diperoleh dari pemberian tugas penyelesaian masalah geometri dan wawancara kepada para subjek penelitian sebanyak 2 (dua) kali. Pemberian tugas penyelesaian masalah kedua dan wawancara kedua merupakan triangulasi data. Hasil penelitian menunjukkan bahwa proses berpikir siswa terungkap melalui tugas penyelesaian masalah geometri yang diberikan. Siswa bertemperamen choleric menggunakan proses berpikir prosedural dalam menyelesaikan masalah geometri, sedangkan siswa bertemperamen melancholic menggunakan proses berpikir konseptual dalam menyelesaikan masalah geometri.</p> <p><strong>Kata kunci</strong>: <em>Proses Berpikir; Choleric; Melancholic; Masalah Geometri</em></p> <p><em><strong>[English]:</strong> </em>This study aims to describe the thinking process of students with choleric and melancholic temperament in solving geometry problems. The thinking process in this research is conceptual thinking process or procedural thinking process. The conceptual thinking process includes 5 (five) competencies, i.e. using basic rules, seing patterns, applying concepts, clarifying situations, and developing problems. The process of procedural thinking is a way of thinking of students who are used to memorizing formulas and using routine ways of solving problems. This research was a descriptive research with qualitative approach. The subjects consisted of 2 (two) female students with high and equivalent mathematics abilities in the ninth grade in Salatiga, Indonesia consisting of 1 (one) choleric student and 1 (one) melancholic student. The selection of research subjects is based on temperament test and mathematical ability test. Research data obtained from geometry problem solving task and interview to the research subjects twice. The second task of problem solving and interview is triangulation of data. The results reveal the thinking process of students through the task of solving the geometry problem given. Student with choleric temperament used procedural thinking processes in solving geometry problems, while student with melancholic temperament used conceptual thinking processes in solving geometry problems.</p> <p><strong>Keywords</strong>: <em>Thinking; Choleric; Melancholic; Geometry Problems</em></p> 2017-11-01T15:46:33+00:00 ##submission.copyrightStatement## http://jurnalbeta.ac.id/index.php/betaJTM/article/view/119 Model guided inquiry, student teams achievement division, dan kemampuan penalaran matematis siswa 2018-04-19T06:48:49+00:00 Resti Madiana Lestari restimadianalestari@gmail.com Rully Charitas Indra Prahmana rully.indra@mpmat.uad.ac.id <p><em><strong>[Bahasa]</strong></em>: Penelitian ini bertujuan untuk mengetahui perbedaan pengaruh penerapan model Guided Inquiry dengan model Student Teams Achievement Division (STAD) terhadap kemampuan penalaran matematis siswa. Penelitian ini menggunakan metode quasi experimental dengan desain matching-only posttest-only control group, yang dilaksanakan di salah satu SMA Negeri di Yogyakarta. Instrument yang digunakan adalah instrument tes yang telah valid dalam bentuk soal uraian. Hasil penelitian menunjukkan bahwa terdapat perbedaan yang signifikan pada kemampuan penalaran matematis antara siswa yang memperoleh pembelajaran dengan model Guided Inquiry dengan siswa yang memperoleh pembelajaran dengan model STAD. Selanjutnya, hasil penilaian rata-rata kemampuan penalaran matematis siswa yang memperoleh model pembelajaran guided inquiry lebih tinggi dibandingkan dengan siswa yang memperoleh model pembelajaran STAD. </p> <p><strong>Kata kunci</strong>: <em>Guided Inquiry; STAD; Penalaran Matematis</em></p> <p><strong><em>[English]</em></strong>: This study aims to determine differences of mathematical reasoning skills between students who obtain mathematics learning using Guided Inquiry model and Student Teams Achievements Division (STAD) model. This research method used is a quasi-experiment with matching only posttest only control group which implemented in one of the Senior High School in Yogyakarta. The instrument used is a valid test instrument namely posttest with descriptive evaluation. The result of this research showed that there is a difference of mathematical reasoning skills between students who obtain mathematics learning using guided inquiry model and students who obtain mathematics learning using STAD model. Furthermore, the average of mathematical reasoning skills between students who obtain mathematics learning using guided inquiry model is higher than students who obtain mathematics learning using STAD model. </p> <p><strong>Keywords</strong>: <em>Guided Inquiry; STAD; Mathematical Reasoning</em></p> 2017-11-02T00:00:00+00:00 ##submission.copyrightStatement## http://jurnalbeta.ac.id/index.php/betaJTM/article/view/104 Kemampuan berpikir kreatif dan pemecahan masalah siswa melalui penerapan model project based learning 2018-04-19T06:48:48+00:00 Rahmazatullaili Rahmazatullaili rahma.mahira15@gmail.com Cut Morina Zubainur rahma.mahira15@gmail.com Said Munzir rahma.mahira15@gmail.com <p><em><strong>[Bahasa]</strong></em>: Penelitian ini bertujuan mengetahui kemampuan berpikir kreatif dan pemecahan masalah siswa sesudah penerapan model Project based learning dibandingkan dengan sebelum penerapan model tersebut serta korelasi antara kemampuan berpikir kreatif dan pemecahan masalah. Penelitian ini merupakan penelitian eksperimen dengan desain penelitian one-group pretest-postest group design. Populasi penelitian ini adalah siswa Madrasah Tsanawiyah Swasta Darul Ulum Banda Aceh sedangkan sampel penelitian yaitu siswa kelas VIII2 sebanyak 30 siswa. Instrumen dalam penelitian ini terdiri atas tes kemampuan berpikir kreatif dan pemecahan masalah. Analisis data dilakukan secara kuantitatif menggunakan uji t yaitu Paired Samples T-Test untuk pengujian perbedaan skor yang diperoleh siswa sebelum pembelajaran (pretes) dan setelah pembelajaran (postes). Hasil penelitian menunjukkan bahwa kemampuan berpikir kreatif dan pemecahan masalah siswa setelah penerapan model Project based learning lebih baik dari sebelum penerapan. Selain itu, terdapat hubungan antara kemampuan berpikir kreatif dan pemecahan masalah siswa yang belajar melalui penerapan model Project based learning. Hubungan kemampuan berpikir kreatif dan pemecahan masalah berada pada kategori cukup.</p> <p><strong><em>Kata kunci</em></strong><em>: Berpikir Kreatif; Pemecahan Masalah; Project based learning</em></p> <p><em><strong>[English]</strong></em>: This research aims to understand the students’ creative thinking and problem solving ability after implementing project based learning compared to before implementation and correlation between creative thinking and problem solving ability. It is an experiment research with one-group pretest-postest group design. The population is all students in Madrasah Tsanawiyah Swasta Darul Ulum Banda Aceh, 30 students are selected as samples. The instruments used are creative thinking and problem solving test. Data analysis used t-test, i.e. paired samples T-test to examine score difference before the implementation of project based learning (pretest) and after it (posttest). The result shows that creative thinking and problem solving ability after implementation is better than before it. In addition, there is a correlation between creative thinking and problem solving ability in ‘enough’ category.</p> <p><strong>Keywords</strong>: <em>Creative Thinking; Problem Solving; Project Based Learning</em></p> <p>&nbsp;</p> <p>&nbsp;</p> 2017-11-03T06:22:31+00:00 ##submission.copyrightStatement## http://jurnalbeta.ac.id/index.php/betaJTM/article/view/116 Pengembangan problem based learning dengan assessment for learning berbantuan smartphone dalam pembelajaran matematika 2018-04-19T06:48:47+00:00 Muhammad Ridlo Yuwono ridloyuwono90@gmail.com Muhammad Wahid Syaifuddin zahwanafisa@yahoo.com <p><em><strong>[Bahasa]</strong></em>: Penelitian ini bertujuan untuk menghasilkan model Problem Based Learning (PBL) menggunakan penilaian Assessment for Learning (AfL) berbantuan smartphone, disingkat PBL-AfL-S yang valid, praktis dan efektif untuk mendukung implementasi kurikulum 2013 di SMA. Tahap-tahap pengembangan model PBL-AfL-S terdiri dari penelitian pendahuluan, pengembangan/prototiping, dan evaluasi. Kualitas model PBL-AfL-S mengacu pada kriteria kualitas menurut Nieveen (1999) yaitu valid, praktis, dan efektif. Model PBL-AfL-S diujicobakan di SMA Negeri 3 Klaten dalam dua tahap uji coba. Uji coba tahap I dilaksanakan di kelas XI-IPA 6 dan uji coba tahap II dilaksanakan di kelas XI-IPA 7. Instrumen penelitian terdiri dari: 1) Instrumen penilaian kevalidan komponen model dan perangkat pendukung pembelajaran, 2) Instrumen kepraktisan aktivitas guru dan siswa, dan 3) Instrumen keefektifan yang meliputi angket penilaian diri, lembar penilaian proyek, tes prestasi belajar, dan lembar respon siswa. Hasil penelitian menunjukkan bahwa model PBL-AfL-S dan perangkat pembelajarannya telah memenuhi kriteria valid, praktis dan efektif.</p> <p><strong>Kata kunci</strong>: Pembelajaran; Masalah; Asesmen; Smartphone</p> <p><em><strong>[English]</strong></em>: This study aims to develop a Problem Based Learning (PBL) model using Assessment for Learning (AFL) with smartphone, abbreviated as PBL-AfL-S as valid, practical and effective to support the implementation of the 2013 curriculum in High School. The stages of developing the PBL-AfL-S model consist of preliminary research, development or prototyping, and evaluation. The quality criteria of PBL-AfL-S refer to Nieveen (1999), i.e. valid, practical, and effective. The PBL-AfL-S model was piloted in SMA Negeri 3 Klaten in two phases. Tryout 1 was conducted in class XI-IPA 6 and tryout 2 was in class XI-IPA 7. The research instruments consist of: 1) The validity instrument of the model and its learning support tools, 2) the practicality of the teacher’s and students’ activity, and 3) The effectiveness instruments including self-assessment questionnaires, project appraisal sheets, achievement tests, and student response sheets. The results show that the PBL-AfL-S model and learning tools have met the valid, practical and effective criteria.</p> <p><strong>Keywords</strong>: Problem based Learning, Assessment; Smartphone</p> 2017-11-24T10:23:47+00:00 ##submission.copyrightStatement## http://jurnalbeta.ac.id/index.php/betaJTM/article/view/110 Integrasi concise learning method dengan mind mapping dalam pembelajaran matematika di perguruan tinggi 2018-04-19T06:48:46+00:00 Ciptianingsari Ayu Vitantri ciptianingsariayu@mipa.unipdu.ac.id <p><strong><em>[Bahasa]</em></strong>: Penelitian ini bertujuan untuk mendeskripsikan penerapan, pemahaman konsep, dan respon mahasiswa terhadap pembelajaran CLM&nbsp; yang diintegrasikan dengan mind mapping pada mata kuliah aljabar linier elementer I. Penelitian ini termasuk dalam penelitian deskriptif kualitatif, dengan subjek penelitian adalah mahasiswa prodi matematika dan pendidikan matematika semester gasal tahun ajaran 2016/2017 yang mengambil mata kuliah aljabar linier elementer I. Instrumen utama dalam penelitian ini adalah peneliti sendiri dengan instrumen pendukung yaitu lembar observasi, tes pemahaman konsep, angket respon, dan pedoman wawancara. Hasil penelitian menunjukkan: 1) Langkah-langkah pembelajaran CLM yang diintegrasikan dengan mind mapping meliputi preview, participate, process (mengolah informasi dalam bentuk mind mapping), practice, dan produce. 2) Pemahaman konsep mahasiswa mengalami peningkatan setelah pembelajaran. Dan 3) Mahasiswa memberikan respon positif terhadap pelaksanaan pembelajaran CLM yang diintegrasikan dengan mind mapping.</p> <p><strong>Kata kunci</strong>: Concise Learning Method; Mind Mapping; Pemahaman Konsep; Respon; Aljabar Linier Elementer.</p> <p><em><strong>[English]</strong></em>: This research aimed to describe the implementation, students’ understanding and their responses on CLM integrated with mind mapping on Linear Elementary Algebra I course, &nbsp;This research was qualitative descriptive research with the subjects involved were students of mathematics and mathematics education on 2016/2017 academic year who took Linear Elementary Algebra I course. The main instrument in this research was the researcher and the supporting instruments used are observation sheet, test, response questionnaire, and interview guide. The results showed that: 1) The steps of CLM integrated with mind mapping include preview, participate, process (process all information into mind mapping), practice, and produce. 2) The students’ understanding of the mathematics concept of were developed. And 3) the students responded positively to the implementation of CLM integrated with mind mapping by showing enjoyment in the course.</p> <p><strong>Keywords</strong>: Concise Learning Method; Mind Mapping; Understanding of Concept; Responses; Linear Elementary Algebra.</p> 2017-11-29T11:34:08+00:00 ##submission.copyrightStatement## http://jurnalbeta.ac.id/index.php/betaJTM/article/view/121 Kemampuan literasi matematika siswa SMP ditinjau dari gaya belajar 2018-04-19T06:48:45+00:00 Muhammad Syawahid syawahid@uinmataram.ac.id Susilahudin Putrawangsa putrawangsa@uinmataram.ac.id <p><em><strong>[Bahasa]</strong></em>: Penelitian ini bertujuan untuk mendeskripsikan dan menganalisis kemampuan literasi matematika siswa ditinjau dari gaya belajar. Penelitian ini dilaksanakan di SMPN 1 Mataram kelas VII. Subjek dalam penelitian ini adalah 3 siswa dari 82 siswa kelas VIIIA dan VIIIB yang masing-masing memiliki gaya belajar auditori, visual dan kinestetis. Penelitian ini menggunakan pendekatan kualitatif. Instrumen yang digunakan yaitu angket gaya belajar dan tes kemampuan literasi matematika. Data dianalisis secara deskriptif untuk menggambarkan hasil tes literasi matematika siswa. Hasil penelitian menunjukkan bahwa: 1) Siswa dengan gaya belajar auditori memiliki kemampuan literasi matematika level 4, yang ditunjukkan dengan kemampuan mereka dalam menyelesaikan soal literasi matematika level 4 (soal nomor 1 dan 2) meskipun mereka kesulitan dalam menyelesaikan soal literasi matematika dengan level 3 (soal nomor 3 dan 4). 2) Siswa dengan gaya belajar visual memiliki kemampuan literasi matematika level 3 yang ditunjukkan dengan kemampuan mereka dalam menyelesaikan soal literasi matematika level 3 (soal nomor 3 dan 4) dan tidak mampu menyelesaikan soal literasi matematika level 4 (soal nomor 1 dan 2). 3) Siswa dengan gaya belajar kinestetis memiliki kemampuan literasi matematika level 4 yang ditunjukkan dengan kemampuan mereka dalam menyelesaikan soal literasi matematika level 4 (soal nomor 1) dan level 3 (soal nomor 3 dan 4). Pada soal nomor 2 (level 4) siswa dengan gaya belajar kinestetis kurang teliti sehingga jawaban yang dihasilkan salah.&nbsp;</p> <p><strong>Kata kunci</strong>: Literasi Matematika; Gaya Belajar; Auditori; Visual; Kinestetis</p> <p><strong><em>[English]</em></strong>: This research aims to describe and analyze student’s mathematic literacy referring to learning style. This research was conducted at SMPN 1 Mataram for VIII class. The subjects are 3 students from 82 students of class VIIIA dan VIIIB who respectively have auditory, visual and kinesthetic learning style. The method used in this research is qualitative. Instruments used in this research are a questionnaire of learning style and tests of mathematical literacy. Data analysis was conducted descriptively to portray students’ mathematics literacy referring to learning styles. This research shows that: 1) The students with auditory learning style are in the 4<sup>th</sup> level of mathematical literacy, it is indicated by their ability in solving 4<sup>th</sup> level math literacy problem (question 1 and 2) although they have difficulties in solving 3th level math literacy problem (questions 3 and 4). 2) The students with visual learning styles are in 3<sup>rd</sup> level of mathematical literacy indicated by their ability to solve 3<sup>rd</sup> level math literacy problems (questions 3 and 4) and can’t solve the 4<sup>th</sup> level math literacy problem (questions 1 and 2). 3) The students with kinesthetic learning styles have 4<sup>th</sup> level of mathematical literacy shown by their ability to solve 4<sup>th</sup> level of math literacy problems (question 1) and 3<sup>rd</sup> &nbsp;level (question 3 and 4). They are less accurate in solving question 2 (4<sup>th</sup> level) so as they have wrong answer.&nbsp;</p> <p><strong>Keywords</strong>: Mathematics Literacy; Learning Style; Auditory; Visual; Kinesthetic</p> 2017-12-05T14:54:49+00:00 ##submission.copyrightStatement##