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Abstrak Sebagian siswa mungkin memiliki pengetahuan yang tepat dalam menggunakan prosedur 

matematika secara relevan, namun apakah mereka sungguh memiliki pemahaman yang utuh tentang 

"mengapa atau bagaimana" prosedur matematika tersebut diperoleh? Pemahaman yang tidak utuh 

tersebut berpotensi menjadi penghalang kesuksesan siswa dalam memahami konsep matematika. 

Artikel ini mengusulkan kerangka kerja untuk mengembangkan proceptual knowledge (pengetahuan 

proseptual) pada materi turunan, yakni kombinasi pengembangan pengetahuan prosedural dan 
konseptual matematika yang dibangun di atas teori-teori pembelajaran matematika yang ada, serta 

hasil refleksi pribadi penulis dari proses belajar mandiri tentang konsep rumus diferensial. Perspektif 

teoritis dan praktis yang diusulkan dalam artikel ini dapat menjadi panduan bagi siapa saja untuk 

mengembangkan pengalaman belajar matematika yang lebih bermakna, khususnya pada topik 

dengan rumus dan prosedur matematis yang kompleks seperti pada turunan.  

 

Kata kunci Pengetahuan proseptual, Pengetahuan prosedural, Pengetahuan konseptual, Turunan 

 

Abstract Some students might have the proper knowledge to use mathematical procedures where 

relevant, but do they actually have a solid understanding of “why or how” those procedures work?  

Such an incomplete understanding of mathematics concepts can be a stumbling block in students’ 

success in mathematics. This paper aims to propose and elaborate a framework for developing 

proceptual knowledge combining both procedural and conceptual knowledge on differentiation that 

are constructed on existing mathematics learning theories on how we understand mathematics, 

besides my personal reflections from the independent learning on differentiation. The theoretical and 

practical perspectives proposed in this article share insight with anyone in developing a more 

meaningful mathematics-independent learning experience, especially on topics with complex 

mathematical formulas or procedures, such as differentiation. 
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Introduction 

It was still stuck in my mind the moment when I could not properly answer my sister’s 

query about the derivatives of trigonometry in calculus. “How can the derivative of sinus equal 

to cosines, whereas the derivative of cosines equals negative sinus?" she asked. All that I could 

say was, “well, it is true, but that is the way it is. It is just some basic rules of differentiation that 

you have to remember." In spite of the fact that I was aware of those differentiation formulae, I 
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had yet to learn why and how those equations worked. The response I gave to my sister arguably 

is the typical answer we commonly receive when asking why and how certain formulae in 

mathematics work. It was considered the same when our maths teachers said, "turn it upside 

down and then multiply" for the division of fractions. At this point, it can be indicated that 

mathematics concepts were offered as ready-made products, which have been that way from the 

start (Li & Schoenfeld, 2019). Hence, students need to use the fixed formula or strategy in 

solving any mathematics problems without having to make sense of the formula. 

Differentiation was one topic area in mathematics that I found personally very challenging 

back in secondary school, as it contains many symbols and complex formulae that were merely 

learned through drill and memorisation. I was not the only one who struggled with this topic 

area since many pieces of literature had confirmed students' difficulties in grasping the ideas 

behind the concept of derivatives in calculus (Burns, 2014; Hashemi et al., 2015; Maharaj, 2013; 

Tall, 1992). Some students could remember some of the differential equations but likely not be 

able to provide proper answers when confronted with a question that tested their logical 

rationalisation of the formulae. I am going to depict what I mean from my previous assertion 

through this following conversation with my lecturer during the calculus course I took back in 

my undergraduate degree. L stands for the lecturer, while M stands for my initial name.  

 

L :  Do you know what the derivative of y=x2 is?  

M : Yes. It is 2x. 

L : How do you get the result? 

M : As I know, in differentiation of any exponential function, whatever the exponent 

upstairs, it moves in front of the constant number, and we take one away from the 

exponent. 

L :  Why do you move its exponent to the front and then take one away from it? 

M : I don’t know. That’s the rule that I remember when I learned derivatives at school. 

 

The dialogue above clearly demonstrates the fact that I know the derivative rules and have 

sufficient ability to use them. However, at the same time, it implies that I just know "what" the 

rules involved but with a very limited understanding of “why” it works that way. Skemp (2020) 

referred to such a piece of knowledge as instrumental understanding, that is, "knowing rules 

without reasons". In other words, this assertion implies that memorisation of mathematics rules 

often comes without understanding. While this kind of knowledge does not necessarily always 

bring detrimental impacts on students’ development in mathematics -which will be discussed 

further in the next section-, focusing solely on developing this kind of knowledge will lead to 

short-term memory (Ferlazzo, 2020) and inflexibility in adopting the procedures into new 

problems (Skemp, 2020). That is to say, students with merely procedural knowledge might 

encounter trouble when given a mathematics problem that does not quite fit the procedures they 

had learned. Some empirical studies have confirmed that students who learned mathematics 

solely in a procedural-based approach tend to develop an inert knowledge that was of limited 

use to them (Arslan, 2010; Boaler, 1998).  For this reason, therefore, it is crucial to review the 

learning theory behind developing knowledge in mathematics. Through the review, I intend to 

dig a more in-depth understanding of derivatives by focusing on rationalising all the differential 

equations through self-study. However, before discussing further how I develop my knowledge 

of derivatives, some theoretical perspectives and technical terms used in this piece of work will 

be initially defined and discussed in the following section. 
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Theoretical Review  

Different types of knowledge in mathematics 

Anderson and Krathwohl (2001) stated that knowledge is what is known or expected to be 

known by learners, which is gained through a cognitive process. "Knowledge" and "the way 

learners understand" are basically two closely related yet distinct concepts. The latter indicates 

the action of grasping meaning or an active process of knowing (Sierpinska, 1990) and a 

continuous development of cumulating knowledge (Michener, 1978). From these definitions, it 

can be argued that knowledge is a "product" of the cognitive process, while the way someone 

understands refers to the "process" of cognition.  In the context of mathematics, there are two 

fundamental types of knowledge that students gain from mathematics learning. The first one is 

knowledge in carrying out a number of mathematical problems using skills, algorithms, methods, 

and procedures, whereas the other one is knowledge in having a ‘sense’ of the mathematical 

concepts and skills (e.g. Canobi, 2009; Hiebert & Lefevre, 1986; Hurrell, 2021; Long, 2005; 

Miller & Hudson, 2007; Rittle-Johnson, 2017; Skemp, 2020). Interestingly, those two distinct 

types of knowledge are technically termed differently across the literature. Many pieces of 

literature termed the former as procedural knowledge, while the latter was known as conceptual 

knowledge (Hiebert & Lefevre, 1986; Rittle-Johnson & Alibali, 1999). Meanwhile, Baroody and 

Ginsburg (1986) distinguished the two types of knowledge as mechanical and meaningful 

knowledge, whereas Skemp (1976) characterised the two as instrumental understanding and 

relational understanding consecutively. Despite those different labels across literature, each of 

the terminologies refers to considerably the same definition (Hiebert & Lefevre, 1986).  

Then, the question might arise whether or not one piece of knowledge is much better than 

the other. Skemp (1976) argued that knowledge of the procedure, which he referred to as 

instrumental understanding, does not indicate understanding at all if it merely knows the rule 

and how to use it. This, in my interpretation, is closely linked to the emphasis on memorisation 

or habitual repetition of any mathematical rules as in rote learning, which, as per Long (2005), 

does not create meaningful knowledge or skills. Besides, students who learn solely in a 

procedural way tend to do mathematics according to a set of mathematical rules that mainly 

involves memorisation with no or very limited understanding of the underlying meanings of 

those rules (Arslan, 2010). As a consequence, students can end up with peculiar and 

unreasonable solutions (Martin, 2009), and each mathematical concept that is learned appears to 

be fragmented and has no relation to the other concepts (Li & Schoenfeld, 2019). Despite all 

those drawbacks, this does not mean that knowledge of procedures harms students' learning. 

Skemp (2020) argued that students could benefit from such knowledge and provoke three 

possible advantages. First, some mathematics concepts are much easier and quicker to 

understand through procedural ways, such as "turn it upside down and multiply for division by 

a fraction" (p.8). Secondly, as students can get the right answers using procedural ways, the 

feeling of success and the rewards are more immediate they get. Lastly, it involves less 

knowledge yet is still reliable.  

On the contrary, conceptual knowledge indicates the flexibility of the knower in 

manipulating mathematical symbols in mind (see Gray & Tall, 1994) and in understanding the 

mathematical concepts and also indicates an understanding of the interrelations among those 

concepts (Rittle-Johnson & Alibali, 1999). The interrelationship can be between two or more 

mathematical concepts or between a concept previously learned and the newly learned (Rittle-
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Johnson et al., 2016). Such flexible thoughts mean an ability to adapt and change methods to fit 

new problem situations (Skemp, 2020), and therefore it profoundly contributes to students' 

success and performance when working on mathematics problems (Boaler, 1993). 

 

Proceptual knowledge 

Students typically go through a procedurally oriented phase before they can effectively 

integrate their conceptual knowledge (Tall et al., 1999). In spite of the fact that those who solely 

concentrate on the procedure can be very good at computations and succeed in the short term, 

they may lack the flexibility that will give them ultimate success in the long term (Gray & Tall, 

1992). However, this does not necessarily mean that students would always devastate by 

procedural knowledge because even relational mathematicians often use instrumental thinking 

(Skemp, 1976).  

As a matter of fact, procedural fluency and conceptual understanding are two out of five 

predominant strands of mathematical fluency that indicate someone understands and can do 

mathematics (National Research Council, 2001). Despite the long-standing debate about which 

type of knowledge is better acquired by pupils, the previous assertion explicitly indicates the 

significance of the two types of knowledge. Both procedural and conceptual knowledge are 

critically important and powerful to be developed in understanding mathematics and help to 

strengthen each other et al., 2015). Long (2005) asserted that conceptual knowledge is closely 

linked to procedural knowledge, where knowledge of procedures is nested in conceptual 

knowledge. Rittle-Johnson and Schneider (2015) supported the idea of an inseparable linkage 

between procedural and conceptual knowledge and argued that the two constructs are bi-

directional; that is to say, procedural knowledge supports conceptual knowledge, and vice versa.  

 Gray and Tall (1992) proposed the idea of procept, which is a combination of mathematical 

processes and concepts. With this notion in mind, mathematics learning should encourage pupils 

to have the proper knowledge to use mathematical procedures where relevant and give meaning 

to the process in a flexible way that allows process and concept to be interchanged at will, often 

without any distinction being made between the two. As having been alluded to at the beginning 

about instrumental understanding, the opposite category of this understanding is relational 

understanding (Skemp, 2020), that is, “knowing both what to do and why”. Interestingly, 

different ways of understanding mathematics will contribute to the acquisition of different 

knowledge (Lampert, 1986). That is to say, a student who understands mathematics 

instrumentally will likely merely gain procedural knowledge, while on the other hand, learning 

which emphasises developing learners’ relational understanding will provide the learners with 

proceptual knowledge. 

 

The Proposed Framework 

Developing proceptual knowledge on derivatives 

I was initially confused about how to start developing my knowledge of derivatives. What 

I did at the very beginning of my learning process was trying to solve a number of problems 

related to differentiation. I was doing this because I had no longer practised for the last few years, 

and I would also train my memory to solve more complex derivative problems. I could solve 

straightforward problems that require simple memory, such as solving problems using the power 

rule, e.g., formulae 1 to 5 in Figure 1. However, I encountered difficulties when attempting 

problems involving quotient or product rule of derivatives, e.g., formulae 6 and 7 in Figure 1. 



Procedural knowledge or conceptual knowledge?...   

 

171 

  
 

One plausible reason that could explain such difficulties is because rule 6 and 7 of Figure 1 

involve mathematical steps or procedures that I had no idea how they worked. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Some derivatives formulae I had to memorise back in school 

Therefore, I tried to put myself as a high school learner who had just started learning 

differentiation. I was helped by the approach described by Coles (2016) in his book “Engaging 

in Mathematics in the Classroom.” Instead of directly offering learners ready-made formulae of 

the differential equation, the idea of differentiation is introduced by involving the measurement 

of a gradient of a graph. I learned that gradient basically represents the slope of the tangent of 

a graph of a function, like the differentiation. An example of finding the gradient of y=x2 at x=1 

was given in that book. I did the same numerical process for y=x2+x from x=1, as shown in 

Figure 2, to several points in the x-coordinate, such as x=2; 1
1

2
, and 1

1

3
. At this starting point, 

using graphs helped me to visualize what the concept of differentiation looks like. 

 

 

Figure 2. Finding the slope of the tangent line of the curve y=x2+x 

https://en.wikipedia.org/wiki/Tangent
https://en.wikipedia.org/wiki/Graph_of_a_function
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Having seen the gradients above, I got 4, 3
1

2
, and 3

1

3
. I could spot the pattern of the slopes 

here, and therefore, I could predict the gradient of the tangent to various curves at x=1, such as 

3
1

4
, as the slope of the line from x=1 to x=1

1

4
. It can be clearly seen that we will get an infinite 

sequence of slopes of lines as the slope tends to the tangent (Cohen, 1991). In general, if I extend 

this sequence of gradient and call h the change in x-coordinate (the number I add to the abscissa 

from x=1), I got 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  
[(1 + ℎ)2 + (1 + ℎ)] − (12 + 1)

(1 + ℎ) − 1
 

 

As h gets closer and closer to 0, the limit of this sequence can be written as: 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  lim
ℎ→0

[(1 + ℎ)2 + (1 + ℎ)] − (12 + 1)

(1 + ℎ) − 1
 

 

After expanding the brackets and simplifying, I get the limit of this sequence: 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  lim
ℎ→0

 3 + ℎ = 3 

I did the same activity to find the slope of the tangent to the curve 𝑦 = 𝑥2 + 𝑥 at various 

points (i.e. 𝑥 = 2 𝑎𝑛𝑑 𝑥 = 3, and I could predict the gradient of 𝑦 = 𝑥2 + 𝑥 at 𝑥 = 4 or 5 and 

so forth: 

X-coordinate 1 2 3 4 5 

The gradient of the tangent 3 5 7 9 11 

 

At this point, I arrived at the general pattern of the gradient of the tangent to the curve 𝑦 =

𝑥2 + 𝑥 as follows. 

 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  lim
ℎ→0

[(𝑥 + ℎ)2 + (𝑥 + ℎ)] − (𝑥2 + 𝑥)

(𝑥 + ℎ) − 𝑥
 

= lim
ℎ→0

(𝑥2 + 2𝑥ℎ + ℎ2) + (𝑥 + ℎ) − (𝑥2 + 𝑥)

ℎ
 

= lim
ℎ→0

2𝑥ℎ + ℎ2 + ℎ

ℎ
 

= lim
ℎ→0

 2𝑥 + ℎ + 1 

= 2𝑥 + 1  

 

Having been working on this numerical process, I have arrived at the definition of the 

differential of a function. 

𝑓′(𝑥)  =  lim
𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥) − 𝑓(𝑥)

𝛿𝑥
 

 

Definition of Differentiation: The limit of the ratio of the change of a function (y-ordinate) 

to the change of a variable in it (x-axis) as the latter limits to zero (Cohen, 1991). Accordingly, 

I learned that gradient is the first derivative of a function. From this definition, therefore, I started 

to prove most of the differential equations that I learned in secondary school in order to 

rationalise all those equations and overcome my lack of understanding of how those derivatives 

formulae are obtained. Figure 3 is some snapshots from my notebook during the independent 
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learning I carried out in an effort to comprehend and to prove each formula of derivatives which 

I used to have to memorise yet without understanding. 

 

      
 

Figure 3.  Some snapshots from the self-study in proving the derivatives formulae 

 

Reflection from the learning process 

I began my independent study by directly attempting some mathematics problems related 

to derivatives using the formulae that I could remember. However, I noticed that new knowledge 

had not been acquired or developed through this activity because I did just drill using the basic 

formulae already rooted in my memory. On the other hand, when solving some more complex 

problems, such as finding the derivatives of multiplication and/or division of two functions, I 

got to reopen my book to get the formulae involved because I already forgot them.  

At this point, where I still relied heavily on the various formulae of differentiation, I 

construe that my knowledge of differentiation had not been well internalised yet. One possible 

explanation for that is the fact that I did not comprehend what the symbols in the differential 

formulae mean and where they are derived from. Moreover, I had to recall different formulae of 

differentiation to solve different problems; that is to say, the way I learned derivatives in school 

unconsciously drove me to the conclusion that there is no interrelationship among the formulae, 

which resulted in some formulae I have forgotten. This short-term memory of differentiation 

becomes obvious evidence of a result of procedural understanding embedded in my learning by 

which memorisation of rules was dominating, but a lack of reasoning on those rules was evident 

(Skemp, 2020). Such an overemphasis on memorising activity in learning might be the 

reasonable factor that drives me to the point of "memorisation overload" (Cornell, 1999), so that 

while new knowledge is acquired, the rarely trained knowledge might perish. 

On the contrary, once I changed my learning approach by first trying to comprehend the 

definition of derivatives using the measurement of the gradient of a graph (Cohen, 1991; Coles, 

2016), I could gradually understand the underlying concepts of derivatives and ultimately arrived 

at the point where I identify myself to develop a more conceptual knowledge rather than the 

procedural one. As an illustration, I initially did not know that gradient and the concept of limit 

have a relationship to derivatives since I used to directly employ the ready-made formulae of 

derivatives in solving problems that do not require computation involving the concepts of limit. 

Furthermore, having understood the definition of differentiation and its intertwinement with 
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other mathematical concepts, I have been able to rationalise the formulae or rules of derivative: 

how those rules are derived from, and also to solve a number of differential problems using this 

definition. If in case I forgot any formulae involved in solving differential problems, I could just 

recall the definition of differentiation that has been rooted in my memory. Understanding the 

concept of derivatives 'relationally' benefits me in the sense that less memory work is involved, 

and what has to be memorised is in the interrelated form that can be easily retained in my mind 

(Skemp, 2020). 

Apart from the aforementioned arguments, it does not necessarily mean that the role of 

shortcuts like memorising the derivative formulae should be completely avoided in learning. 

This is because when attempting to derive problems solely using the definition, one might still 

be vulnerable to making computational errors. Figure 4 illustrates a mistake due to a 

computational mistake when I tried to find the derived value of a function using the definition 

of the derivative. I wrote in the notebook as a reflection, "I made process skill error 

(computational error) when using the definition (of derivates). It makes me think that providing 

shortcuts like the rules or formulae will be helpful, (with a note that) students have (already) 

understood the underlying concepts of derivatives”. 

 

 
Figure 4. The advantage of procedural knowledge in solving a derivative problem 

 

 Therefore, once the underlying concepts or definition of derivatives has been understood, 

a rational understanding of the shortcut method can be more beneficial, which indicates the 
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development of procedural knowledge. Hence, memorising mathematics rules or formulae 

which is part of procedural knowledge, is equally valuable and useful as developing conceptual 

knowledge. This clearly demonstrates that both procedural and conceptual are closely linked to 

each other (Long, 2005), but it is crucial to note that conceptual knowledge should be embedded 

first before offering procedural knowledge. This assertion is in line with what Hurrell (2021) 

explains that there is a strong likelihood of developing proper knowledge in mathematics if it 

starts with conceptual knowledge and then moves to procedural knowledge, not the reverse, 

procedural to conceptual. Having understood the underlying concepts of derivatives and being 

able to compute a number of mathematics problems using the shortcut method, I noticed this 

moment in which I gained proceptual knowledge. 

Another notable reflection during my study was a shift of understanding from an informal 

level to a more formal level of understanding. The informal level of understanding occurred 

when I employed graphs in measuring the gradient of a curve as a powerful tool for me to 

visualise the concept of derivatives (see Figure 2). Later, I could flexibly deal with various 

derivatives problems without creating any graph as I have comprehended the definition of 

derivatives which indicates the shift to a formal level of understanding (Heuvel-Panhuizen, 

2003). To summarize my overall learning journey on differentiation, I constructed the learning 

framework with terminologies from the relevant kinds of literature, as delineated in Figure 5. 

 

Figure 5.  Learning framework on developing proceptual knowledge on derivates 

The above learning framework presented in Figure 5 summarises how an ideal proceptual 

knowledge was developed from my independent learning of derivates. The drill and practice I 

did on numbers of derivatives problems did not create new knowledge but merely improved my 

computational skills or memorising mathematics facts and procedures. This kind of knowledge 

was categorised by Skemp (1976) as instrumental understanding, which to his assertion, does 

not indicate understanding at all. This argumentation might be accurate as challenges became 

evident in my learning when I encountered mathematics problems that use slightly or even 

completely different procedures. Therefore, I tried to comprehend the underlying concepts of 

the procedural knowledge of derivatives I have already memorised as well as those formulae 

that I have not memorised yet. By understanding the fundamental definition and the 



Barumbun, M. & Kharisma, D. 

 
 

176 
 

 

interrelationships between the concepts of derivatives, conceptual knowledge has been 

developed (see also Rittle-Johnson & Alibali, 1999). This, however, does not necessarily mean 

that conceptual knowledge is superior to procedural knowledge and ignores the role of 

procedural knowledge (see Hurrell, 2021; Long, 2005). In fact, procedural knowledge has a 

significant role in my own learning, as illustrated in Figure 4. At this point, the acquisition of 

both procedural and conceptual knowledge of derivates indicates the acquisition of so-called 

proceptual knowledge (Gray & Tall, 1992; 1994). This, in my interpretation, is similar to what 

Skemp (1976) termed as relational understanding, which is “knowing what to do and why” (p. 

20). 

After going through my independent study of differentiation, I also realised that there was 

a change of emotion -in a positive way- that I feel about the knowledge I developed in this 

module. Emotion, at this point, is simply defined as my view or perspective towards derivatives. 

At the beginning of my study, I honestly regretted my decision to challenge myself and take this 

topic which I found difficult. Even after doing some drills, I could not understand what I was 

doing. However, by understanding the concept relationally through the stages I went through, 

including proving the formulas of the derivatives, in the end, my lack of proceptual knowledge 

can be overcome. This also indicates the ability to prove mathematical concepts, facts, or 

formulae plays an important role in a way that proof establishes a logical connection in mind. 

This can give learners the feeling of an adequate explanation of "why" or "how" certain formula 

is derived, and that is intellectually satisfying (Cuoco, Goldenberg, & Mark, 1996). 

 

The implication of the proposed framework 

As the world continues to develop, there emerges an urgency to reorganise mathematics 

education curricula in schools to prepare learners for the future development of the world. In the 

mathematics context, Cuoco, Paul Goldenberg, & Mark (1996) propose that the earliest step in 

achieving such an intention is by providing an academic experience that allows students to 

develop some good habits of mind. As asserted by Skemp (1979:82) that “habits are learned, not 

innate. … Once established, habits are very difficult to change." This implies that to prepare 

students with habits, from now on, the curricula for the 21st century should be designed to create 

mathematical habits to make lifelong learners one of the main goals of 21st-century curricula 

(Demirel, 2009; Trilling & Fadel, 2009). Accordingly, in this section, some aspects or reflections 

from my subject study on derivatives could be a recommendation to consider in designing 

mathematics curricula in the 21st century. 

 

Pull learning, not push information 

One valuable reflection from my subject study on derivatives is that I, as a learner, pull 

learning through independent study, compared to my previous study in high school, where 

information was pushed to be acquired by learners. It is believed that the learning process should 

create a didactical environment where students engage actively in their learning endeavour to 

construct their knowledge or understanding of mathematics. This orientation might be linear to 

the theory of constructivism in which the learner is viewed as an active participant, and learning 

happens through the process of constructing knowledge (pulled learning) rather than merely 

acquiring insight or ready-made information from adults (pushed information) (Anderson et al., 

2013; Duffy & Cunningham, 1996). Similarly, the 21st curriculum is designed to pull authentic 

learning experiences where learners are fostered to take responsibility to explore their own 



Procedural knowledge or conceptual knowledge?...   

 

177 

  
 

learning and choose the most effective strategies for their own learning (Cabi & Yalcinalp, 

2012). This self-reliance learning on an ongoing basis will ultimately lead learners to create a 

habit or personal characteristic as lifelong learners, that is to say, having a sense of willingness 

or motivation to always learn. It implies that learning does not solely take place in the academic 

context in formal school years but rather takes place because of a sense of curiosity or awareness 

to feed the hungry mind regardless of time and place.  

 

Develop relational understanding/proceptual knowledge 

Although through instrumental understanding, pupils can get the answer in an easier and 

faster way, it virtually indicates short terms success (Skemp, 2020). Furthermore, the methods 

that bring about short-term success may lead to long-term failure (Gray & Tall, 1992). On the 

other hand, if the goal of the learners is to understand mathematics relationally, although it might 

take much time and frustration, it advantages them in many ways in which the knowledge gained 

is more adaptable to new tasks, less memorisation is involved, and it will create a feeling of 

confidence in their own ability (Skemp, 1976). This notion also implies that learning for 21st-

century curriculum should emphasise the process of understanding rather than outcome-oriented 

learning. In this sense, the concept of lifelong learning does not only work to accomplish present 

targets but also to impart future long-term values and attitudes to learning (Demirel, 2009).  

 

Encourage learning transfer 

As stated by Cornell (1999), one of the main reasons students tend to dislike mathematics, 

in general, is because they think they will never employ a particular algorithm or equation 

outside of mathematics or school. In the 21st-century curriculum, on the contrary, students should 

necessarily be prepared to transfer the mathematical knowledge and skills they gain to other 

contexts outside of mathematics (Saavedra & Opfer, 2012). This implies that learning should 

provide opportunities for learners to not only make connections among mathematical ideas – as 

part of relational understanding – but also to recognise and apply mathematics in other 

disciplines or other areas of their lives. The implication of this notion might lead us to the idea 

of a 21st-century curriculum in which one discipline is interrelated with another (Noddings, 

2007). For example, in my learning process, I tried to figure out how the concept of derivatives 

can be useful and applicable in solving problems in other disciplines, such as Chemistry, Physics, 

and Economics. In chemistry, derivatives are broadly used to predict functions like reaction rates 

or radioactive decay. In the field of physics, the use of concepts of derivatives is applicable to 

solve problems in relation to motion, electricity, heat, light, harmonics, acoustics, astronomy, 

and dynamics. In biology, meanwhile, to formulate rates such as birth and death rates, the 

concepts of derivatives are involved. In economics, the derivative is generally utilized to 

compute marginal cost and revenue to predict maximum profit in a specific setting. By making-

connection between mathematics and other fields of science, we can expect students to realise 

how vital the role of mathematics is in their life as well as in their future careers after school 

(Evans et al., 2013).  

 

Conclusion 

Reflections from my learning journey on developing proceptual knowledge on 

differentiation have emerged invaluable lessons and a critical stance on how mathematics should 
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be introduced to students. In preparing students to face future challenges, the 21st-century 

mathematics curriculum needs to equip students with proceptual knowledge of mathematics 

concepts. Pulling independent learning among students instead of pushing it is one viable way 

to achieve this goal. Besides, developing both procedural as well as conceptual understanding 

of differentiation has altered the way I study and understand mathematics concepts, and 

therefore, such a type of understanding needs to be nurtured among learners. Lastly, the transfer 

of mathematical knowledge and skills that students acquire to other contexts outside of 

mathematics or in a real-life situation should be encouraged as a key to preparing them for the 

future. 
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